Skip to main content
Top
Published in:

01-12-2016 | Original Article

Individual privacy in social influence networks

Authors: Sara Hajian, Tamir Tassa, Francesco Bonchi

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Online social networking platforms have the possibility to collect an incredibly rich set of information about their users: the people they talk to, the people they follow and trust, the people they can influence, as well as their hobbies, interests, and topics in which they are authoritative. Analyzing these data creates fascinating opportunities for expanding our understanding about social structures and phenomena such as social influence, trust and their dynamics. At the same time, mining this type of rich information allows building novel online services, and it represents a great resource for advertisers and for building viral marketing campaigns. Sharing social-network graphs, however, raises important privacy concerns. To alleviate this problem, several anonymization methods have been proposed that aim at reducing the risk of a privacy breach on the published data while still allowing to analyze them and draw relevant conclusions. The bulk of those proposals only considers publishing the network structure, that is a simple (often undirected) graph. In this paper we study the problem of preserving users’ individual privacy when publishing information-rich social networks. In particular, we consider the obfuscation of users’ identities in a topic-dependent social influence network, i.e., a directed graph where each edge is enriched by a topic model that represents the strength of the social influence along the edge per topic. This information-rich graph is obviously much harder to anonymize than standard graphs. We propose here to obfuscate the identity of nodes in the network by randomly perturbing the network structure and the topic model. We then formalize our privacy notion, k-obfuscation, and show how to evaluate the level of obfuscation under a strong adversarial assumption. Experiments on two social networks confirm that randomization can successfully protect the privacy of the users while maintaining high-quality data for applications, such as influence maximization for viral marketing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For instance, in Twitter in-degree and out-degree are public information.
 
2
The datasets we use for experiments, as well as our random obfuscation software and the software for quantifying the level of obfuscation achieved, are available at http://​bit.​ly/​1pt9NJp.
 
3
It is worth noting that, although called “set”, a seed set as output by a TIM query is an ordered list of nodes.
 
Literature
go back to reference Aggarwal CC (2005) On k-anonymity and the curse of dimensionality. In: VLDB, pp 901–909 Aggarwal CC (2005) On k-anonymity and the curse of dimensionality. In: VLDB, pp 901–909
go back to reference Aslay C, Barbieri N, Bonchi F, Baeza-Yates R (2014) Online topic-aware influence maximization queries. In: EDBT, pp 295–306 Aslay C, Barbieri N, Bonchi F, Baeza-Yates R (2014) Online topic-aware influence maximization queries. In: EDBT, pp 295–306
go back to reference Aslay Ç, Lu W, Bonchi F, Goyal A, Lakshmanan LVS (2015) Viral marketing meets social advertising: ad allocation with minimum regret. PVLDB 8(7):822–833 Aslay Ç, Lu W, Bonchi F, Goyal A, Lakshmanan LVS (2015) Viral marketing meets social advertising: ad allocation with minimum regret. PVLDB 8(7):822–833
go back to reference Backstrom L, Dwork C, Kleinberg JM (2007) Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: WWW, pp 181–190 Backstrom L, Dwork C, Kleinberg JM (2007) Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. In: WWW, pp 181–190
go back to reference Barbieri N, Bonchi F (2014) Influence maximization with viral product design. In: SDM. Philadelphia, PA, USA Barbieri N, Bonchi F (2014) Influence maximization with viral product design. In: SDM. Philadelphia, PA, USA
go back to reference Barbieri N, Bonchi F, Manco G (2012) Topic-aware social influence propagation models. In: ICDM, pp 81–90 Barbieri N, Bonchi F, Manco G (2012) Topic-aware social influence propagation models. In: ICDM, pp 81–90
go back to reference Bi B, Tian Y, Sismanis Y, Balmin A, Cho J (2014) Scalable topic-specific influence analysis on microblogs. In: WSDM, pp 513–522 Bi B, Tian Y, Sismanis Y, Balmin A, Cho J (2014) Scalable topic-specific influence analysis on microblogs. In: WSDM, pp 513–522
go back to reference Boldi P, Bonchi F, Gionis A, Tassa T (2012) Injecting uncertainty in graphs for identity obfuscation. In: VLDB, vol 5, pp 27–31 Boldi P, Bonchi F, Gionis A, Tassa T (2012) Injecting uncertainty in graphs for identity obfuscation. In: VLDB, vol 5, pp 27–31
go back to reference Bonchi F, Gionis A, Tassa T (2011) Identity obfuscation in graphs through the information theoretic lens. In: ICDE, pp 924–935 Bonchi F, Gionis A, Tassa T (2011) Identity obfuscation in graphs through the information theoretic lens. In: ICDE, pp 924–935
go back to reference Chen S, Zhou S (2013) Recursive mechanism: towards node differential privacy and unrestricted joins. In: SIGMOD, pp 653–664 Chen S, Zhou S (2013) Recursive mechanism: towards node differential privacy and unrestricted joins. In: SIGMOD, pp 653–664
go back to reference Chen S, Fan J, Li G, Feng J, Tan K-L, Tang J (2015) Online topic-aware influence maximization. Proc VLDB Endow 8(6):666–677CrossRef Chen S, Fan J, Li G, Feng J, Tan K-L, Tang J (2015) Online topic-aware influence maximization. Proc VLDB Endow 8(6):666–677CrossRef
go back to reference Cheng J, Fu AW-C, Liu J (2010) K-isomorphism: privacy preserving network publication against structural attacks. In: SIGMOD, pp 459–470 Cheng J, Fu AW-C, Liu J (2010) K-isomorphism: privacy preserving network publication against structural attacks. In: SIGMOD, pp 459–470
go back to reference Chu Y, Zhao X, Liu S, Feng J, Yi J, Liu H (2014) An efficient method for topic-aware influence maximization. In: APWeb, pp 584–592 Chu Y, Zhao X, Liu S, Feng J, Yi J, Liu H (2014) An efficient method for topic-aware influence maximization. In: APWeb, pp 584–592
go back to reference Cormode G, Srivastava D, Bhagat S, Krishnamurthy B (2009) Class-based graph anonymization for social network data. PVLDB 2:766–777 Cormode G, Srivastava D, Bhagat S, Krishnamurthy B (2009) Class-based graph anonymization for social network data. PVLDB 2:766–777
go back to reference Dwork C (2006) Differential privacy. In: ICALP, pp 1–12 Dwork C (2006) Differential privacy. In: ICALP, pp 1–12
go back to reference Dyagilev K, Yom-Tov E (2013) Linguistic factors associated with propagation of political opinions in twitter. Soc Sci Comput Rev 32(2):195–204CrossRef Dyagilev K, Yom-Tov E (2013) Linguistic factors associated with propagation of political opinions in twitter. Soc Sci Comput Rev 32(2):195–204CrossRef
go back to reference Gur I (2013) Broker-based ad allocation in social networks. PhD thesis, Bilkent University Gur I (2013) Broker-based ad allocation in social networks. PhD thesis, Bilkent University
go back to reference Hanhijärvi S, Garriga G, Puolamaki K (2009) Randomization techniques for graphs. In: SDM, pp 780–791 Hanhijärvi S, Garriga G, Puolamaki K (2009) Randomization techniques for graphs. In: SDM, pp 780–791
go back to reference Hay M, Miklau G, Jensen D, Weis P, Srivastava S (2007) Anonymizing social networks. Univ Mass Tech Rep 7:180 Hay M, Miklau G, Jensen D, Weis P, Srivastava S (2007) Anonymizing social networks. Univ Mass Tech Rep 7:180
go back to reference Hay M, Li C, Miklau G, Jensen D (2009) Accurate estimation of the degree distribution of private networks. In: ICDM, pp 169–178 Hay M, Li C, Miklau G, Jensen D (2009) Accurate estimation of the degree distribution of private networks. In: ICDM, pp 169–178
go back to reference Hay M, Miklau G, Jensen D (2010a) Analyzing private network data. In: Bonchi F, Ferrari E (eds) Privacy-aware knowledge discovery: novel applications and new techniques. Chapman & Hall/CRC, Boca Raton, pp 459–498CrossRef Hay M, Miklau G, Jensen D (2010a) Analyzing private network data. In: Bonchi F, Ferrari E (eds) Privacy-aware knowledge discovery: novel applications and new techniques. Chapman & Hall/CRC, Boca Raton, pp 459–498CrossRef
go back to reference Hay M, Miklau G, Jensen D, Towsley DF, Li C (2010b) Resisting structural re-identification in anonymized social networks. VLDB J 19:797–823CrossRef Hay M, Miklau G, Jensen D, Towsley DF, Li C (2010b) Resisting structural re-identification in anonymized social networks. VLDB J 19:797–823CrossRef
go back to reference Hay M, Rastogi V, Miklau G, Suciu D (2010c) Boosting the accuracy of differentially private histograms through consistency. PVLDB 3:1021–1032 Hay M, Rastogi V, Miklau G, Suciu D (2010c) Boosting the accuracy of differentially private histograms through consistency. PVLDB 3:1021–1032
go back to reference Karwa V, Raskhodnikova S, Smith AD, Yaroslavtsev G (2014) Private analysis of graph structure. ACM Trans Database Syst 39:22MathSciNetCrossRef Karwa V, Raskhodnikova S, Smith AD, Yaroslavtsev G (2014) Private analysis of graph structure. ACM Trans Database Syst 39:22MathSciNetCrossRef
go back to reference Kasiviswanathan SP, Nissim K, Raskhodnikova S, Smith A (2013) Analyzing graphs with node differential privacy. In: TCC, pp 457–476 Kasiviswanathan SP, Nissim K, Raskhodnikova S, Smith A (2013) Analyzing graphs with node differential privacy. In: TCC, pp 457–476
go back to reference Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD, pp 137–146 Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD, pp 137–146
go back to reference Kivel M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271CrossRef Kivel M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271CrossRef
go back to reference Lin B, Kifer D (2013) Information preservation in statistical privacy and Bayesian estimation of unattributed histograms. In: SIGMOD, pp 677–688 Lin B, Kifer D (2013) Information preservation in statistical privacy and Bayesian estimation of unattributed histograms. In: SIGMOD, pp 677–688
go back to reference Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: SIGMOD, pp 93–106 Liu K, Terzi E (2008) Towards identity anonymization on graphs. In: SIGMOD, pp 93–106
go back to reference Liu L, Wang J, Liu J, Zhang J (2009) Privacy preservation in social networks with sensitive edge weights. In: SDM, pp 954–965 Liu L, Wang J, Liu J, Zhang J (2009) Privacy preservation in social networks with sensitive edge weights. In: SDM, pp 954–965
go back to reference Liu L, Tang J, Han J, Jiang M, Yang S (2010) Mining topic-level influence in heterogeneous networks. In: CIKM, pp 199–208 Liu L, Tang J, Han J, Jiang M, Yang S (2010) Mining topic-level influence in heterogeneous networks. In: CIKM, pp 199–208
go back to reference Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks. In: KDD, pp 529–537 Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks. In: KDD, pp 529–537
go back to reference Nissim K, Raskhodnikova S, Smith A (2007) Smooth sensitivity and sampling in private data analysis. In: STOC, pp 75–84 Nissim K, Raskhodnikova S, Smith A (2007) Smooth sensitivity and sampling in private data analysis. In: STOC, pp 75–84
go back to reference Romero DM, Meeder B, Kleinberg JM (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: WWW, pp 695–704 Romero DM, Meeder B, Kleinberg JM (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: WWW, pp 695–704
go back to reference Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD, pp 807–816 Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD, pp 807–816
go back to reference Tassa T, Bonchi F (2014) Privacy preserving estimation of social influence. In: EDBT, pp 559–570 Tassa T, Bonchi F (2014) Privacy preserving estimation of social influence. In: EDBT, pp 559–570
go back to reference Weng J, Lim E-P, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: WSDM, pp 261–270 Weng J, Lim E-P, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: WSDM, pp 261–270
go back to reference Weng L, Ratkiewicz J, Perra N, Gonçalves B, Castillo C, Bonchi F, Schifanella R, Menczer F, Flammini A (2013) The role of information diffusion in the evolution of social networks. In: KDD, pp 356–364 Weng L, Ratkiewicz J, Perra N, Gonçalves B, Castillo C, Bonchi F, Schifanella R, Menczer F, Flammini A (2013) The role of information diffusion in the evolution of social networks. In: KDD, pp 356–364
go back to reference Wu X, Ying X, Liu K, Chen L (2010) A survey of privacy-preservation of graphs and social networks. In: Aggarwal CC, Wang H (eds) Managing and mining graph data, 1st edn. Springer, Berlin, pp 421–453CrossRef Wu X, Ying X, Liu K, Chen L (2010) A survey of privacy-preservation of graphs and social networks. In: Aggarwal CC, Wang H (eds) Managing and mining graph data, 1st edn. Springer, Berlin, pp 421–453CrossRef
go back to reference Xiao Q, Chen R, Tan K-L (2014) Differentially private network data release via structural inference. In: KDD, pp 911–920 Xiao Q, Chen R, Tan K-L (2014) Differentially private network data release via structural inference. In: KDD, pp 911–920
go back to reference Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: SDM, pp 739–750 Ying X, Wu X (2008) Randomizing social networks: a spectrum preserving approach. In: SDM, pp 739–750
go back to reference Ying X, Wu X (2009) Graph generation with prescribed feature constraints. In: SDM, pp 966–977 Ying X, Wu X (2009) Graph generation with prescribed feature constraints. In: SDM, pp 966–977
go back to reference Zou L, Chen L, Özsu MT (2009) K-automorphism: a general framework for privacy preserving network publication. PVLDB 2:946–957 Zou L, Chen L, Özsu MT (2009) K-automorphism: a general framework for privacy preserving network publication. PVLDB 2:946–957
Metadata
Title
Individual privacy in social influence networks
Authors
Sara Hajian
Tamir Tassa
Francesco Bonchi
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-015-0312-y

Premium Partner