Skip to main content
Top

2025 | OriginalPaper | Chapter

4. Individual Travel Chain Characteristics Recognition and Experimental System Design

Authors : Fei Yang, Yanchen Wang, Yudong Guo, Haihang Jiang, Zhenxing Yao

Published in: Reliability Evaluation and Its Influence on Traffic Application

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reasonable and effective recognition algorithm of travel chain characteristics is the basis of reliability analysis. In this chapter, a more effective recognition system of travel chain is proposed based on the existing recognition technology. Then the design mechanism and process of synchronous acquisition experiment are introduced, and the mobile phone signaling data for the demonstration is collected. Finally, the “communication-traffic” integrated simulation platform is introduced to analysis the identification sensitivity under different influencing factors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang Z, He SY, Leung Y (2018) Applying mobile phone data to travel behaviour research: a literature review. Travel Behav Soc 11:141–155CrossRefMATH Wang Z, He SY, Leung Y (2018) Applying mobile phone data to travel behaviour research: a literature review. Travel Behav Soc 11:141–155CrossRefMATH
2.
go back to reference Calabrese F, Diao M, Di Lorenzo G et al (2013) Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp Res Part C: Emerg Technol 26:301–313CrossRefMATH Calabrese F, Diao M, Di Lorenzo G et al (2013) Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp Res Part C: Emerg Technol 26:301–313CrossRefMATH
3.
go back to reference Jiang S, Fiore GA, Yang Y et al (2013) A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining Jiang S, Fiore GA, Yang Y et al (2013) A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
4.
go back to reference Calabrese F, Colonna M, Lovisolo P et al (2011) Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst 12(1):141–151CrossRef Calabrese F, Colonna M, Lovisolo P et al (2011) Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst 12(1):141–151CrossRef
5.
go back to reference Wang F, Chen C (2018) On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp Res Part C: Emerg Technol 87:58–74CrossRefMATH Wang F, Chen C (2018) On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp Res Part C: Emerg Technol 87:58–74CrossRefMATH
7.
go back to reference Song L (2015) Research on traffic origin-destination distribution based on cell phone data. Southeast University Song L (2015) Research on traffic origin-destination distribution based on cell phone data. Southeast University
8.
go back to reference Lu Z, Long Z, Xia J et al (2019) A random forest model for travel mode identification based on mobile phone signaling data. Sustainability 11(21):5950 Lu Z, Long Z, Xia J et al (2019) A random forest model for travel mode identification based on mobile phone signaling data. Sustainability 11(21):5950
9.
go back to reference Cheng L, Chen X, De Vos J et al (2019) Applying a random forest method approach to model travel mode choice behavior. Travel Behav Soc 14:1–10CrossRefMATH Cheng L, Chen X, De Vos J et al (2019) Applying a random forest method approach to model travel mode choice behavior. Travel Behav Soc 14:1–10CrossRefMATH
10.
go back to reference Rebollo JJ, Balakrishnan H (2014) Characterization and prediction of air traffic delays. Transp Res Part C: Emerg Technol 44:231–241CrossRefMATH Rebollo JJ, Balakrishnan H (2014) Characterization and prediction of air traffic delays. Transp Res Part C: Emerg Technol 44:231–241CrossRefMATH
11.
go back to reference Yin D, Chen T, Li J et al (2018) Road traffic prediction based on base station location data by Random Forest. In: 2018 3rd International conference on communication and electronics systems (ICCES). IEEE, Coimbatore, India, pp 264–270 Yin D, Chen T, Li J et al (2018) Road traffic prediction based on base station location data by Random Forest. In: 2018 3rd International conference on communication and electronics systems (ICCES). IEEE, Coimbatore, India, pp 264–270
13.
14.
go back to reference Liu FG, Zheng JZ, Zheng LL et al (2020) Combining attention-based bidirectional gated recurrent neural network and two-dimensional convolutional neural network for document-level sentiment classification. Neurocomputing 371:39–50 Liu FG, Zheng JZ, Zheng LL et al (2020) Combining attention-based bidirectional gated recurrent neural network and two-dimensional convolutional neural network for document-level sentiment classification. Neurocomputing 371:39–50
15.
go back to reference Han HG (2019) Research on fault prediction of IGBT based on deep learning. Beijing Jiaotong University Han HG (2019) Research on fault prediction of IGBT based on deep learning. Beijing Jiaotong University
16.
go back to reference Liu Y (2017) The Research of time series prediction based on GRU neural network. Chengdu University of Technology Liu Y (2017) The Research of time series prediction based on GRU neural network. Chengdu University of Technology
17.
go back to reference Baum LE, Eagon JA (1967) An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull Am Math Soc 73(3):360–363MathSciNetCrossRefMATH Baum LE, Eagon JA (1967) An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull Am Math Soc 73(3):360–363MathSciNetCrossRefMATH
18.
go back to reference Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269 Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269
20.
go back to reference (2021) Density and operation status monitoring report of major urban road networks in China. Urban Traffic Infrastructure Monitoring and Management Laboratory of Ministry of Housing and Urban-Rural Development, Beijing (2021) Density and operation status monitoring report of major urban road networks in China. Urban Traffic Infrastructure Monitoring and Management Laboratory of Ministry of Housing and Urban-Rural Development, Beijing
21.
go back to reference Zhang Y, Yu LJ, Zhao NL et al (2010) Application of simultaneous perturbation stochastic approximation algorithm in parameter calibration of VISSIM microscope simulation model. J Transp Syst Eng Inf Technol 10(4):44–49MATH Zhang Y, Yu LJ, Zhao NL et al (2010) Application of simultaneous perturbation stochastic approximation algorithm in parameter calibration of VISSIM microscope simulation model. J Transp Syst Eng Inf Technol 10(4):44–49MATH
22.
go back to reference Li S, Li G, Cheng Y et al (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462 Li S, Li G, Cheng Y et al (2020) Urban arterial traffic status detection using cellular data without cellphone GPS information. Transp Res Part C: Emerg Technol 114:446–462
23.
go back to reference Chen B, Song Y, Jiang T et al (2018) Real-time estimation of population exposure to PM2.5 using mobile- and station-based big data. Int J Environ Res Public Health 15(4) Chen B, Song Y, Jiang T et al (2018) Real-time estimation of population exposure to PM2.5 using mobile- and station-based big data. Int J Environ Res Public Health 15(4)
Metadata
Title
Individual Travel Chain Characteristics Recognition and Experimental System Design
Authors
Fei Yang
Yanchen Wang
Yudong Guo
Haihang Jiang
Zhenxing Yao
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-7950-5_4