Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Engineering Mathematics 1/2022

01-04-2022

Induced-charge electroosmosis, polarization, electrorotation, and traveling-wave electrophoresis of horn toroidal particles

Author: Touvia Miloh

Published in: Journal of Engineering Mathematics | Issue 1/2022

Log in

Abstract

A theoretical framework is presented for calculating the polarization and induced-charge electrophoretic mobility of a polarizable closed (horn) toroidal micro-particle exposed to a non-uniform axial AC electric forcing. The analysis is based on employing the standard (linearized) ‘weak-field’ electroosmotic model for a symmetric electrolyte. In particular, we discuss the case of traveling-wave excitation and provide analytic expressions for the tori induced-phoretic velocity in the Stokes regime in terms of the frequency and wavelength of the ambient electric field. In addition, we consider the non-linear electroosmotic flow problem about a stationary torus, which is subject to a uniform field, and provide explicit expressions for the resulting Stokes’ stream function driven by the surface Helmholtz–Smoluchowski velocity slip. Finally, we analyze the case of asymmetric (transverse) two-component electrorotation and by calculating the Maxwell electric torque, provide analytic solution for the induced-charge angular velocity of a freely suspended conducting horn torus.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jones TB (1995) Electro mechanics of particles. Cambridge University Press, Cambridge CrossRef Jones TB (1995) Electro mechanics of particles. Cambridge University Press, Cambridge CrossRef
2.
go back to reference Morgan H, Green NG (2003) AC electro kinetics: colloids and nanoparticles. Research Studies Press, Baldock Morgan H, Green NG (2003) AC electro kinetics: colloids and nanoparticles. Research Studies Press, Baldock
4.
go back to reference Henslee EA (2020) Review: dielectrophoresis in cell characterization. Electrophoresis 41:1915–1930 CrossRef Henslee EA (2020) Review: dielectrophoresis in cell characterization. Electrophoresis 41:1915–1930 CrossRef
5.
go back to reference Miloh T (2008) A unified theory for the dipolophoresis of nanoparticles. Phys. Fluids 20:107105 MATHCrossRef Miloh T (2008) A unified theory for the dipolophoresis of nanoparticles. Phys. Fluids 20:107105 MATHCrossRef
6.
go back to reference Flores-Mena JS, Garcia-Sanchez P, Ramos A (2020) Dipolophoresis and travelling-wave dipolophoresis of metal microparticles. Micromachines 11:259 CrossRef Flores-Mena JS, Garcia-Sanchez P, Ramos A (2020) Dipolophoresis and travelling-wave dipolophoresis of metal microparticles. Micromachines 11:259 CrossRef
7.
go back to reference Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114 CrossRef Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114 CrossRef
8.
go back to reference Frankel I, Yossifon G, Miloh T (2012) Dipolophoresis of dielectric spheroids under asymmetric fields. Phys. Fluids 24:012004 CrossRef Frankel I, Yossifon G, Miloh T (2012) Dipolophoresis of dielectric spheroids under asymmetric fields. Phys. Fluids 24:012004 CrossRef
9.
go back to reference Miloh T, Weis-Goldstein B (2015) Electrophoretic rotation and orientation of spheroidal particles in AC fields. Phys. Fluids 27:022003 CrossRef Miloh T, Weis-Goldstein B (2015) Electrophoretic rotation and orientation of spheroidal particles in AC fields. Phys. Fluids 27:022003 CrossRef
10.
go back to reference Weis-Goldstein B, Miloh T (2017) 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles. Phys. Fluid 29:052008 CrossRef Weis-Goldstein B, Miloh T (2017) 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles. Phys. Fluid 29:052008 CrossRef
11.
go back to reference Zehe A, Ramirez A, Staraostenko O (2004) Mathematical modelling of electro-rotation spectra of small particles in liquid solutions. Applications to human erythrocyte aggregates. Braz. J. Med. Bio. Res. 37:173–183 CrossRef Zehe A, Ramirez A, Staraostenko O (2004) Mathematical modelling of electro-rotation spectra of small particles in liquid solutions. Applications to human erythrocyte aggregates. Braz. J. Med. Bio. Res. 37:173–183 CrossRef
12.
go back to reference Mesarec L, Gozdz W, Iglic A, Kralji-Iglic V, Virga EG, Kralji S (2019) Normal red blood cell’s shape stabilized by membranes in plane ordering. Sci. Rep. 9:19742 CrossRef Mesarec L, Gozdz W, Iglic A, Kralji-Iglic V, Virga EG, Kralji S (2019) Normal red blood cell’s shape stabilized by membranes in plane ordering. Sci. Rep. 9:19742 CrossRef
13.
go back to reference Techaumnal B, Panklang N (2021) Electrochemical analysis of red blood cells under AC electric fields. IEEE Trans. Magn. 10:1109 Techaumnal B, Panklang N (2021) Electrochemical analysis of red blood cells under AC electric fields. IEEE Trans. Magn. 10:1109
14.
go back to reference Krokhmal PA (2002) Exact solution of the displacement boundary-value problem of elasticity for a torus. J. Eng. Math. 44:345–368 MathSciNetMATHCrossRef Krokhmal PA (2002) Exact solution of the displacement boundary-value problem of elasticity for a torus. J. Eng. Math. 44:345–368 MathSciNetMATHCrossRef
15.
go back to reference Krasnitskii S, Trafinov A, Radi E, Sevestianov I (2019) Effect of a rigid toroidal inhomogeneity on the elastic properties of a composite. Math. Mech. Solids 24(4):1129–1146 MathSciNetMATHCrossRef Krasnitskii S, Trafinov A, Radi E, Sevestianov I (2019) Effect of a rigid toroidal inhomogeneity on the elastic properties of a composite. Math. Mech. Solids 24(4):1129–1146 MathSciNetMATHCrossRef
16.
go back to reference Radi E, Sevestianov I (2016) Toroidal insulting inhomogeneity in an infinite space and related problems. Proc. R. Soc. A. 472:0781 CrossRef Radi E, Sevestianov I (2016) Toroidal insulting inhomogeneity in an infinite space and related problems. Proc. R. Soc. A. 472:0781 CrossRef
17.
go back to reference Leshanski AM, Kenneth O (2008) Surface tank treading: Propulsion of Purcell’s toroidal swimmer. Phys. Fluids 20:063104 MATHCrossRef Leshanski AM, Kenneth O (2008) Surface tank treading: Propulsion of Purcell’s toroidal swimmer. Phys. Fluids 20:063104 MATHCrossRef
18.
go back to reference Schmeding LC, Lauga E, Montenegro-Johnson TD (2012) Autophoretic flow on a torus. Phys. Rev. Fluids 2:034201 CrossRef Schmeding LC, Lauga E, Montenegro-Johnson TD (2012) Autophoretic flow on a torus. Phys. Rev. Fluids 2:034201 CrossRef
19.
go back to reference Thaokar RM, Schiessel H, Kulic IM (2007) Hydrodynamics of a rotating torus. Eur. Phys. J. B. 60:325–336 CrossRef Thaokar RM, Schiessel H, Kulic IM (2007) Hydrodynamics of a rotating torus. Eur. Phys. J. B. 60:325–336 CrossRef
20.
go back to reference Scharstein RW, Wilson HB (2005) Electrostatic excitation of a conducting toroid: exact solution and the thin-wire approximation. Electrophoresis 25:1–19 Scharstein RW, Wilson HB (2005) Electrostatic excitation of a conducting toroid: exact solution and the thin-wire approximation. Electrophoresis 25:1–19
21.
go back to reference Wright EB, Peterson PE (1967) Magnetization of an ideal superconducting torus in transverse field. J. Appl. Phys. 38(2):855–860 CrossRef Wright EB, Peterson PE (1967) Magnetization of an ideal superconducting torus in transverse field. J. Appl. Phys. 38(2):855–860 CrossRef
22.
go back to reference Ungphaiboon SL, Attiya D, Gomez d’Ayala G, Sansongsak P, Cellesi F, Tireli N (2010) Materials for microencapsulation: What toroidal (‘doughnuts’) can do better than spherical beads. Soft Matter 6:4070–4083 CrossRef Ungphaiboon SL, Attiya D, Gomez d’Ayala G, Sansongsak P, Cellesi F, Tireli N (2010) Materials for microencapsulation: What toroidal (‘doughnuts’) can do better than spherical beads. Soft Matter 6:4070–4083 CrossRef
25.
go back to reference Takaji H (1973) Slow viscous flow due to the motion of a closed torus. J. Phys. Soc. Jpn. 35(4):1225–1227 CrossRef Takaji H (1973) Slow viscous flow due to the motion of a closed torus. J. Phys. Soc. Jpn. 35(4):1225–1227 CrossRef
26.
go back to reference Dorrepaal JM, Majumdar SR, O’Neill ME, Ranger KL (1976) A closed torus in Stokes flow. Quart. J. Mech. Appl. Math. 29(4):381 MATHCrossRef Dorrepaal JM, Majumdar SR, O’Neill ME, Ranger KL (1976) A closed torus in Stokes flow. Quart. J. Mech. Appl. Math. 29(4):381 MATHCrossRef
27.
go back to reference Majumdar SR, O’Neill ME (1979) Asymmetric Stokes flows generated by the motion of a closed torus. J. Appl. Math. Phys. 30:967–982 MathSciNetMATH Majumdar SR, O’Neill ME (1979) Asymmetric Stokes flows generated by the motion of a closed torus. J. Appl. Math. Phys. 30:967–982 MathSciNetMATH
28.
go back to reference Williams MMR (1987) A closed torus in Stokes flow with slip boundary conditions. Quart. Mech. Appl. Math. 40(2):235–246 MATHCrossRef Williams MMR (1987) A closed torus in Stokes flow with slip boundary conditions. Quart. Mech. Appl. Math. 40(2):235–246 MATHCrossRef
29.
go back to reference Wakiya S (1971) Slow motion in shear flow of doublet of two spheres in contact. J. Phys. Soc. Jpn. 31:1581–1587 CrossRef Wakiya S (1971) Slow motion in shear flow of doublet of two spheres in contact. J. Phys. Soc. Jpn. 31:1581–1587 CrossRef
30.
go back to reference Nir A, Acrivos A (1973) On the creeping flow motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59:209–223 MATHCrossRef Nir A, Acrivos A (1973) On the creeping flow motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59:209–223 MATHCrossRef
31.
go back to reference Takaji H (1974) Slow rotation of two touching spheres in viscous fluid. J. Phys. Soc. Jpn. 36:875–877 CrossRef Takaji H (1974) Slow rotation of two touching spheres in viscous fluid. J. Phys. Soc. Jpn. 36:875–877 CrossRef
32.
go back to reference Zabarankin M (2007) Asymmetric three-dimensional Stokes flows about two fuses equal spheres. Proc. R. Soc. A. 463:2249–2329 MATH Zabarankin M (2007) Asymmetric three-dimensional Stokes flows about two fuses equal spheres. Proc. R. Soc. A. 463:2249–2329 MATH
33.
go back to reference Latta GE, Hess GB (1973) Potential flow past a sphere tangent to a plane. Phys. Fluids 16:974–976 MATHCrossRef Latta GE, Hess GB (1973) Potential flow past a sphere tangent to a plane. Phys. Fluids 16:974–976 MATHCrossRef
34.
go back to reference Small RD, Weihs D (1975) Axisymmetric potential flow over two spheres in contact. ASME. J. Appl. Mech. 42:763–765 CrossRef Small RD, Weihs D (1975) Axisymmetric potential flow over two spheres in contact. ASME. J. Appl. Mech. 42:763–765 CrossRef
35.
go back to reference Morrison FA (1976) Irrotational flow about two touching spheres. ASME. J. Appl. Mech. 43(2):365–366 MATHCrossRef Morrison FA (1976) Irrotational flow about two touching spheres. ASME. J. Appl. Mech. 43(2):365–366 MATHCrossRef
36.
37.
go back to reference Bentwich M, Miloh T (1978) On the exact solution for the two-sphere problem in axisymmetric potential flow. ASME. J. Appl. Mech. 45(3):463–465 MATHCrossRef Bentwich M, Miloh T (1978) On the exact solution for the two-sphere problem in axisymmetric potential flow. ASME. J. Appl. Mech. 45(3):463–465 MATHCrossRef
39.
go back to reference Pitkonen M (2008) Polarizability of a pair of touching dielectric spheres. J. Appl. Phys. 103:104910 CrossRef Pitkonen M (2008) Polarizability of a pair of touching dielectric spheres. J. Appl. Phys. 103:104910 CrossRef
40.
go back to reference Lanzoni L, Radi E, Sevostianov I (2020) Effect of spherical pores coalescence on the overall conductivity of a material. Mech. Mat. 148:103463 CrossRef Lanzoni L, Radi E, Sevostianov I (2020) Effect of spherical pores coalescence on the overall conductivity of a material. Mech. Mat. 148:103463 CrossRef
42.
go back to reference Gradshteyn IS, Ryzhik IM (1965) Table of Integrals, Series, and Products. Academic Press Inc., San Diego MATH Gradshteyn IS, Ryzhik IM (1965) Table of Integrals, Series, and Products. Academic Press Inc., San Diego MATH
43.
go back to reference Hobson EW (1965) The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York MATH Hobson EW (1965) The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York MATH
45.
go back to reference Miloh T (2008) Dipolophoresis of nanoparticles. Phys. Fluids 20:083303 MATH Miloh T (2008) Dipolophoresis of nanoparticles. Phys. Fluids 20:083303 MATH
46.
go back to reference Murtsovkin VA (1996) Nonlinear flows near polarized disperse particles. Colloid J. 58:341 Murtsovkin VA (1996) Nonlinear flows near polarized disperse particles. Colloid J. 58:341
48.
go back to reference Miloh T (2019) AC electrokinetics of polarizable tri-axial ellipsoidal nano-antennas and quantum dot manipulations. Micromachines 10(2):83 CrossRef Miloh T (2019) AC electrokinetics of polarizable tri-axial ellipsoidal nano-antennas and quantum dot manipulations. Micromachines 10(2):83 CrossRef
49.
go back to reference Happel J, Brenner H (1983) Low Reynolds Hydrodynamics. Maritinus Nijhoff, The Hague MATH Happel J, Brenner H (1983) Low Reynolds Hydrodynamics. Maritinus Nijhoff, The Hague MATH
50.
go back to reference Garcia-Sanchez P, Ramos A (2015) Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length. Phys. Rev. E. 92:052313 CrossRef Garcia-Sanchez P, Ramos A (2015) Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length. Phys. Rev. E. 92:052313 CrossRef
51.
go back to reference Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114 CrossRef Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114 CrossRef
Metadata
Title
Induced-charge electroosmosis, polarization, electrorotation, and traveling-wave electrophoresis of horn toroidal particles
Author
Touvia Miloh
Publication date
01-04-2022
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2022
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-021-10194-4

Other articles of this Issue 1/2022

Journal of Engineering Mathematics 1/2022 Go to the issue

Premium Partners