Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

1. Inducing Intentional Strong Nonlinearity in Acoustics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nonlinear phenomena are ubiquitous in engineering and the sciences, and oftentimes are regarded as detrimental and unwanted by the common technical wisdom. Yet, recent work has revealed the many and important potential benefits that nonlinearities can offer in the fields of dynamics and acoustics (and not only), coming hand-in-hand of course, with certain potentially unwanted “side effects” that need to be avoided, e.g., instabilities, bifurcations, multiple co-existing responses, chaos etc. Hence, careful predictive analysis and experimental validation are required when implementing an intentional nonlinearity concept in mechanical design. In this work we focus on the beneficial effects that can be gained when inducing intentional strong nonlinearities in acoustical systems. Ranging from sonic vacua to acoustic metamaterials and phononic lattices, we aim to showcase the important advantages, added functionality, tunability with energy, and possibly transformative performance enhancement that the resulting nonlinear acoustical systems can be empowered with, which simply would not be achievable in traditional linear or weakly nonlinear settings. After providing a brief overview of some elements of strongly nonlinear acoustics we focus on case studies that extend over diverse application fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andersson, S., Söderberg, A., & Björklund S. (2007). Friction models for sliding dry, boundary and mixed lubricated contacts. Tribology International, 40(4), 580–587. Andersson, S., Söderberg, A., & Björklund S. (2007). Friction models for sliding dry, boundary and mixed lubricated contacts. Tribology International, 40(4), 580–587.
go back to reference Bak, B. D., Rochlitz, R., & Nagy, T. K. (2023). Energy transfer mechanisms in binary tree-structured oscillator with nonlinear energy sinks. Nonl. Dyn., 111, 9875–9888.CrossRef Bak, B. D., Rochlitz, R., & Nagy, T. K. (2023). Energy transfer mechanisms in binary tree-structured oscillator with nonlinear energy sinks. Nonl. Dyn., 111, 9875–9888.CrossRef
go back to reference Boechler, N., & Daraio, C. (2009). An experimental investigation of acoustic band gaps and localization in granular elastic chains. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences—IDETC 2009, San Diego, CA. Boechler, N., & Daraio, C. (2009). An experimental investigation of acoustic band gaps and localization in granular elastic chains. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences—IDETC 2009, San Diego, CA.
go back to reference Chen, J., Theurich, T., Krack, M., Sapsis, T., Bergman, L. A., & Vakakis, A. F. (2022). Intense cross-scale energy cascades resembling “Mechanical Turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators. Acta Mechanica, 233, 1289–1305.MathSciNetCrossRef Chen, J., Theurich, T., Krack, M., Sapsis, T., Bergman, L. A., & Vakakis, A. F. (2022). Intense cross-scale energy cascades resembling “Mechanical Turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators. Acta Mechanica, 233, 1289–1305.MathSciNetCrossRef
go back to reference Daraio, C., Nesterenko, V. F., Herbold, E. B., & Jin, S. (2006). Energy trapping and shock disintegration in a composite granular medium. Physical Review Letters, 96, 058002.CrossRef Daraio, C., Nesterenko, V. F., Herbold, E. B., & Jin, S. (2006). Energy trapping and shock disintegration in a composite granular medium. Physical Review Letters, 96, 058002.CrossRef
go back to reference Geib, N., Sasmal, A., Wang, Z., Zhai, Y., Popa, B., & Grosh, K. (2021). Tunable nonlocal purely active nonreciprocal acoustic media. Physical Review B, 103, 165427.CrossRef Geib, N., Sasmal, A., Wang, Z., Zhai, Y., Popa, B., & Grosh, K. (2021). Tunable nonlocal purely active nonreciprocal acoustic media. Physical Review B, 103, 165427.CrossRef
go back to reference Gendelman, O. V., Zolotarevskiy, V., Savin, A. V., Bergman, L. A., & Vakakis, A. F. (2016). Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects. Physical Review E, 93, 032216.MathSciNetCrossRef Gendelman, O. V., Zolotarevskiy, V., Savin, A. V., Bergman, L. A., & Vakakis, A. F. (2016). Accelerating oscillatory fronts in a nonlinear sonic vacuum with strong nonlocal effects. Physical Review E, 93, 032216.MathSciNetCrossRef
go back to reference Gzal, M., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2021). Extreme intermodal energy transfers through vibro-impacts for highly effective and rapid blast mitigation. Comm. Nonlinear Sc. Num. Sim., 103, 106012.MathSciNetCrossRef Gzal, M., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2021). Extreme intermodal energy transfers through vibro-impacts for highly effective and rapid blast mitigation. Comm. Nonlinear Sc. Num. Sim., 103, 106012.MathSciNetCrossRef
go back to reference Job, S., Santibanez, F., Tapia, F., & Melo, F. (2009). Wave localization in strongly nonlinear Hertzian chains with mass defect. Physical Review E, 80, 025602(R).CrossRef Job, S., Santibanez, F., Tapia, F., & Melo, F. (2009). Wave localization in strongly nonlinear Hertzian chains with mass defect. Physical Review E, 80, 025602(R).CrossRef
go back to reference Kikot, I. P., Manevitch, L. I., & Vakakis, A. F. (2015). Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports. Journal of Sound and Vibration, 357, 349–364.CrossRef Kikot, I. P., Manevitch, L. I., & Vakakis, A. F. (2015). Non-stationary resonance dynamics of a nonlinear sonic vacuum with grounding supports. Journal of Sound and Vibration, 357, 349–364.CrossRef
go back to reference Kim, E., Chaunsali, R., Xu, H., Jaworski, J., Yang, J. K., Kevrekidis, P., & Vakakis, A. F. (2015). Nonlinear low- to high-frequency energy cascades in diatomic granular crystals. Physical Review E, 92, 062201.CrossRef Kim, E., Chaunsali, R., Xu, H., Jaworski, J., Yang, J. K., Kevrekidis, P., & Vakakis, A. F. (2015). Nonlinear low- to high-frequency energy cascades in diatomic granular crystals. Physical Review E, 92, 062201.CrossRef
go back to reference Kosevich, Y. A., Manevitch, L. I., & Manevitch, E. L. (2010). Vibrational analogue of nonadiabatic Landau–Zener tunneling and a possibility for the creation of a new yype of energy traps. Physics-Uspekhi, 53(12), 1281. Kosevich, Y. A., Manevitch, L. I., & Manevitch, E. L. (2010). Vibrational analogue of nonadiabatic Landau–Zener tunneling and a possibility for the creation of a new yype of energy traps. Physics-Uspekhi, 53(12), 1281.
go back to reference Manevitch, L. I., & Vakakis, A. F. (2014). Nonlinear oscillatory acoustic vacuum. SIAM Journal on Applied Mathematics, 74(6), 1742–1762.MathSciNetCrossRef Manevitch, L. I., & Vakakis, A. F. (2014). Nonlinear oscillatory acoustic vacuum. SIAM Journal on Applied Mathematics, 74(6), 1742–1762.MathSciNetCrossRef
go back to reference Michaloliakos, A., Wang, C., & Vakakis, A. F. (2023). Machine learning extreme acoustic nonreciprocity of a linear waveguide with multiple nonlinear asymmetric gates. Nonlinear Dynamics, 111, 17277–17297. arXiv:2302.01746 Michaloliakos, A., Wang, C., & Vakakis, A. F. (2023). Machine learning extreme acoustic nonreciprocity of a linear waveguide with multiple nonlinear asymmetric gates. Nonlinear Dynamics, 111, 17277–17297. arXiv:​2302.​01746
go back to reference Mojahed, A., Gendelman, O. V., & Vakakis, A. F. (2019a). Breather arrest, localization, and acoustic nonreciprocity in dissipative nonlinear lattices. Journal of the Acoustical Society of America, 146(1), 826–842.CrossRef Mojahed, A., Gendelman, O. V., & Vakakis, A. F. (2019a). Breather arrest, localization, and acoustic nonreciprocity in dissipative nonlinear lattices. Journal of the Acoustical Society of America, 146(1), 826–842.CrossRef
go back to reference Mojahed, A., Bunyan, J., Tawfick, S., & Vakakis, A. F. (2019b). Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Physical Review Applied, 12(3), 034033.CrossRef Mojahed, A., Bunyan, J., Tawfick, S., & Vakakis, A. F. (2019b). Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Physical Review Applied, 12(3), 034033.CrossRef
go back to reference Mojahed, A., Bergman, L. A., & Vakakis, A. F. (2021). New inverse wavelet transform method with broad application in dynamics. Mechanical Systems and Signal Processing, 156, 107691.CrossRef Mojahed, A., Bergman, L. A., & Vakakis, A. F. (2021). New inverse wavelet transform method with broad application in dynamics. Mechanical Systems and Signal Processing, 156, 107691.CrossRef
go back to reference Nesterenko, V. F. (2021). Dynamics of heterogeneous materials. Springer. Nesterenko, V. F. (2021). Dynamics of heterogeneous materials. Springer.
go back to reference Pennestrì, E., Rossi, V., Salvini, P., & Valentini, P. P. (2016). Review and comparison of dry friction force models. Nonlinear Dynamics, 83, 1785–1801.CrossRef Pennestrì, E., Rossi, V., Salvini, P., & Valentini, P. P. (2016). Review and comparison of dry friction force models. Nonlinear Dynamics, 83, 1785–1801.CrossRef
go back to reference Popa, B., & Cummer, S. A. (2014). Nonreciprocal and highly nonlinear active acoustic metamaterials. Nature Commications, 5, 3398.CrossRef Popa, B., & Cummer, S. A. (2014). Nonreciprocal and highly nonlinear active acoustic metamaterials. Nature Commications, 5, 3398.CrossRef
go back to reference Sen, S., Hong, J., Bang, J., Avalos, E., & Doney, R. (2008). Solitary waves in the granular chain. Physics Reports, 462, 21.MathSciNetCrossRef Sen, S., Hong, J., Bang, J., Avalos, E., & Doney, R. (2008). Solitary waves in the granular chain. Physics Reports, 462, 21.MathSciNetCrossRef
go back to reference Starosvetsky, Y., Jayaprakash, K. R., Hasan, M. A., & Vakakis, A. F. (2017). Topics on the nonlinear dynamics and acoustics of ordered granular media. World Scientific Press. Starosvetsky, Y., Jayaprakash, K. R., Hasan, M. A., & Vakakis, A. F. (2017). Topics on the nonlinear dynamics and acoustics of ordered granular media. World Scientific Press.
go back to reference Tempelman, J. R., Mojahed, A., Gzal, M., Matlack, K. H., Gendelman, O. V., Bergman, L. A., & Vakakis, A. F. (2022). Experimental inter-modal targeted energy transfer in a cantilever beam undergoing vibro-impacts. Journal of Sound and Vibration, 539, 117212.CrossRef Tempelman, J. R., Mojahed, A., Gzal, M., Matlack, K. H., Gendelman, O. V., Bergman, L. A., & Vakakis, A. F. (2022). Experimental inter-modal targeted energy transfer in a cantilever beam undergoing vibro-impacts. Journal of Sound and Vibration, 539, 117212.CrossRef
go back to reference Tempelman, J. R., Vakakis, A. F., & Matlack, K. H. (2023). Spectral energy scattering and interband targeted energy transfer in phononic lattices with local vibro-impact nonlinearities. arXiv:2301.05302 [physics.app-ph] Tempelman, J. R., Vakakis, A. F., & Matlack, K. H. (2023). Spectral energy scattering and interband targeted energy transfer in phononic lattices with local vibro-impact nonlinearities. arXiv:​2301.​05302 [physics.app-ph]
go back to reference Timoshenko, S., & Goyder, J. (2010). Theory of elasticity, 3rd ed. McGraw Hill. Timoshenko, S., & Goyder, J. (2010). Theory of elasticity, 3rd ed. McGraw Hill.
go back to reference Vakakis, A. F., Gendelman, O., Bergman, L. A., McFarland, D. M., Kerschen, G., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems. Springer. Vakakis, A. F., Gendelman, O., Bergman, L. A., McFarland, D. M., Kerschen, G., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems. Springer.
go back to reference Wang, C., Tawfick, S., & Vakakis, A. F. (2020). Irreversible energy transfer, localization and nonreciprocity in weakly coupled, nonlinear lattices with asymmetry. Physica D: Nonlinear Phenomena, 402, 132229.MathSciNetCrossRef Wang, C., Tawfick, S., & Vakakis, A. F. (2020). Irreversible energy transfer, localization and nonreciprocity in weakly coupled, nonlinear lattices with asymmetry. Physica D: Nonlinear Phenomena, 402, 132229.MathSciNetCrossRef
go back to reference Wang, C., Zhang, Q., & Vakakis, A. F. (2021a). Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects. Granular Matter, 23, 21.CrossRef Wang, C., Zhang, Q., & Vakakis, A. F. (2021a). Wave transmission in 2D nonlinear granular-solid interfaces, including rotational and frictional effects. Granular Matter, 23, 21.CrossRef
go back to reference Wang, C., Tawfick, S., & Vakakis, A. F. (2021b). Time scale disparity yielding acoustic nonreciprocity in a 2D granular-elastic solid interface with asymmetry. Physical Review E, 104, 044906.CrossRef Wang, C., Tawfick, S., & Vakakis, A. F. (2021b). Time scale disparity yielding acoustic nonreciprocity in a 2D granular-elastic solid interface with asymmetry. Physical Review E, 104, 044906.CrossRef
go back to reference Wang, C., Kanj, A., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2021c). Experimental Landau-Zener tunneling for wave redirection in nonlinear waveguides. Physical Review Applied, 14, 034053.CrossRef Wang, C., Kanj, A., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2021c). Experimental Landau-Zener tunneling for wave redirection in nonlinear waveguides. Physical Review Applied, 14, 034053.CrossRef
go back to reference Wang, C., Tawfick, S., & Vakakis, A. F. (2022a). Two-dimensional granular-thin plate interface for shock mitigation. International Journal of Nonlinear Mechanics (Special issue dedicated to the memory of Leonid I. Manevitch, Eds. G. Rega, M. Kovaleva and Yu. Mikhlin), 146, 104168. Wang, C., Tawfick, S., & Vakakis, A. F. (2022a). Two-dimensional granular-thin plate interface for shock mitigation. International Journal of Nonlinear Mechanics (Special issue dedicated to the memory of Leonid I. Manevitch, Eds. G. Rega, M. Kovaleva and Yu. Mikhlin), 146, 104168.
go back to reference Wang, C., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2022b). Machine learning nonreciprocity in a linear waveguide with a local nonlinear, asymmetric gate: case of weak coupling. Journal of Sound and Vibration, 537, 117211.CrossRef Wang, C., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2022b). Machine learning nonreciprocity in a linear waveguide with a local nonlinear, asymmetric gate: case of weak coupling. Journal of Sound and Vibration, 537, 117211.CrossRef
go back to reference Wang, C., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2023). Machine learning nonreciprocity in a linear waveguide with a local nonlinear, asymmetric gate: case of strong coupling. Journal of Computational and Nonlinear Dynamics, 1–37, Paper CND-22-1054. Wang, C., Mojahed, A., Tawfick, S., & Vakakis, A. F. (2023). Machine learning nonreciprocity in a linear waveguide with a local nonlinear, asymmetric gate: case of strong coupling. Journal of Computational and Nonlinear Dynamics, 1–37, Paper CND-22-1054.
go back to reference Yang, J., & Sutton, M. (2015). Nonlinear wave propagation in a hexagonally packed granular channel under rotational dynamics. International Journal of Solids and Structures, 77(3), 65–73.CrossRef Yang, J., & Sutton, M. (2015). Nonlinear wave propagation in a hexagonally packed granular channel under rotational dynamics. International Journal of Solids and Structures, 77(3), 65–73.CrossRef
go back to reference Zhai, Y., Kwon, H., & Popa, B. (2019). Active Willis metamaterials for Ultracompact nonreciprocal linear acoustic devices. Physical Review B, 99, 220301(R).CrossRef Zhai, Y., Kwon, H., & Popa, B. (2019). Active Willis metamaterials for Ultracompact nonreciprocal linear acoustic devices. Physical Review B, 99, 220301(R).CrossRef
go back to reference Zhang, Z., Koroleva, I., Manevitch, L. I., Bergman, L. A., & Vakakis, A. F. (2016). Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Physical Review E, 94(3), 032214.MathSciNetCrossRef Zhang, Z., Koroleva, I., Manevitch, L. I., Bergman, L. A., & Vakakis, A. F. (2016). Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Physical Review E, 94(3), 032214.MathSciNetCrossRef
go back to reference Zhang, Z., Manevitch, L. I., Smirnov, V., Bergman, L. A., & Vakakis, A. F. (2018). Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane. Journal of Mechanics Physics Solids, 110, 1–20.MathSciNetCrossRef Zhang, Z., Manevitch, L. I., Smirnov, V., Bergman, L. A., & Vakakis, A. F. (2018). Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane. Journal of Mechanics Physics Solids, 110, 1–20.MathSciNetCrossRef
Metadata
Title
Inducing Intentional Strong Nonlinearity in Acoustics
Author
Alexander F. Vakakis
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_1

Premium Partners