Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Industrial Approach for Direct Electrochemical CO2 Reduction in Aqueous Electrolytes

Authors: Maximilian Fleischer, P. Jeanty, K. Wiesner-Fleischer, O. Hinrichsen

Published in: Zukünftige Kraftstoffe

Publisher: Springer Berlin Heidelberg

share
SHARE

Abstract

With the unprecedented rise of renewable energies, we will experience a profound change of our energy system, moving away from an unsustainable unidirectional energy system to a stable cyclic energy system. Carbon dioxide (CO2) is a product unavoidably coupled to the energy production for electricity generation or transport based on fossil fuels and the emission need to be reduced. Economic solutions for storage or conversion possibilities of large quantities of energy are essential in the future due the volatility of renewable electricity. This article will look into the industrial aspects of a new technology that converts collected CO2 into fuel precursors using renewable energy, thus opening a path for CO2 neutral transportation keeping combustion engines or hybrid concepts.
The standard method to make green fuel would be to collect CO2 and to let it react with green Hydrogen (H2) from water electrolysis powered by renewable energy. This happens in a high-temperature catalytic bed reactor, already scaled up by chemical industry. As a potentially advantageous technological path, recent research opened up the pathway of a direct electrochemical reduction of the CO2. This can be done at room temperature using water based electrolytes. To reach industrially relevant reaction rates, a technology called “gas diffusion electrode” must be employed which is the key to sufficient access of the CO2 to the cathode performing the reaction. There are already well established catalysts like silver for the production of CO/syngas, whereas catalysts for the direct generation of hydrocarbons out of CO2 are under research. The first steps of applied work towards the industrialization of such a technology are described.
Literature
1.
go back to reference Perez R (2015) A fundamental look at supply side energy reserves for the planet. In: The International Energy Agency SHC programme solar update Perez R (2015) A fundamental look at supply side energy reserves for the planet. In: The International Energy Agency SHC programme solar update
2.
go back to reference Hartmann N, Eltrop L, Bauer N, Salzer J, Schwarz S, Schmidt M (2012) Strom-speicherpotenziale für Deutschland, Report. University Stuttgart, Germany Hartmann N, Eltrop L, Bauer N, Salzer J, Schwarz S, Schmidt M (2012) Strom-speicherpotenziale für Deutschland, Report. University Stuttgart, Germany
3.
go back to reference Deutz S, Bongartz D, Heuser B, Kätelhön A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels wind-to-wheel – environmental assessment of CO 2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343 CrossRef Deutz S, Bongartz D, Heuser B, Kätelhön A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels wind-to-wheel – environmental assessment of CO 2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343 CrossRef
4.
go back to reference Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and up-take of molecular formaldehyde. Angew Chem Int Ed Engl 57:9461–9464 CrossRef Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and up-take of molecular formaldehyde. Angew Chem Int Ed Engl 57:9461–9464 CrossRef
5.
go back to reference Jensen SH, Sun X, Ebbesen SD, Knibbe R, Mogensen M (2010) Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells. Int J Hydrogen Energy 35:9544–9549 CrossRef Jensen SH, Sun X, Ebbesen SD, Knibbe R, Mogensen M (2010) Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells. Int J Hydrogen Energy 35:9544–9549 CrossRef
6.
go back to reference Blum L, Meulenberg WA, Nabielek H, Steinberger-Wilckens R (2005) World-wide SOFC technology overview and benchmark. Int J Appl Ceram Technol 2:482–492 CrossRef Blum L, Meulenberg WA, Nabielek H, Steinberger-Wilckens R (2005) World-wide SOFC technology overview and benchmark. Int J Appl Ceram Technol 2:482–492 CrossRef
7.
go back to reference Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO 2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665 CrossRef Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO 2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665 CrossRef
10.
go back to reference Tremel A (2017) Green hydrogen and downstream synthesis products – electricity-based fuels for the transportation sector. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017, Proceedings. Springer Vieweg, Wiesbaden Tremel A (2017) Green hydrogen and downstream synthesis products – electricity-based fuels for the transportation sector. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017, Proceedings. Springer Vieweg, Wiesbaden
11.
go back to reference Tremel A (2018) Electricity-based fuels. Springer International Publishing. ISBN 978–3-319-72458-4 Tremel A (2018) Electricity-based fuels. Springer International Publishing. ISBN 978–3-319-72458-4
12.
go back to reference Kiener C, Fleischer M (2015) Storage of excess power from renewable in chemicals using polygeneration IGCC gasification plants. In: ACHEMA, Frankfurt am Main, Germany, 15–19 June 2015 Kiener C, Fleischer M (2015) Storage of excess power from renewable in chemicals using polygeneration IGCC gasification plants. In: ACHEMA, Frankfurt am Main, Germany, 15–19 June 2015
13.
go back to reference Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO 2 electrolysis and fermentation. Nat Catal 1:32–39 CrossRef Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO 2 electrolysis and fermentation. Nat Catal 1:32–39 CrossRef
14.
go back to reference Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462 CrossRef Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462 CrossRef
15.
go back to reference Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electro-chemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778 CrossRef Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electro-chemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778 CrossRef
16.
go back to reference Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO 2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839 CrossRef Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO 2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839 CrossRef
17.
go back to reference Ogura K, Yano H, Shirai F (2003) Catalytic reduction of CO 2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150:D163–D168 CrossRef Ogura K, Yano H, Shirai F (2003) Catalytic reduction of CO 2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150:D163–D168 CrossRef
18.
go back to reference Hori Y (2008) Electrochemical CO 2 reduction on metal electrodes. In: Vayenas C, White R, Gamboa-Aldeco M (eds) Modern aspects of electrochemistry 42:89–189. Springer, New York Hori Y (2008) Electrochemical CO 2 reduction on metal electrodes. In: Vayenas C, White R, Gamboa-Aldeco M (eds) Modern aspects of electrochemistry 42:89–189. Springer, New York
19.
go back to reference Fleischer M, Lehmann M (Hrsg) (2012) Solid state gas sensors: industrial application. Springer, Heidelberg. ISBN 978-3-642-28092-4 Fleischer M, Lehmann M (Hrsg) (2012) Solid state gas sensors: industrial application. Springer, Heidelberg. ISBN 978-3-642-28092-4
20.
go back to reference Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D (1999) Adsorbed water is key to room temperature gas-sensitive reactions in work function type gas sensors: the carbonate carbon dioxide system. Sens Actuators B 57:115–119 CrossRef Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D (1999) Adsorbed water is key to room temperature gas-sensitive reactions in work function type gas sensors: the carbonate carbon dioxide system. Sens Actuators B 57:115–119 CrossRef
21.
go back to reference Fleischer M (2008) Advances in application potential of solid date gas sensors: high-temperature semi conducting oxides and ambient temperature GasFET devices. Meas Sci Technol 19:1–18 CrossRef Fleischer M (2008) Advances in application potential of solid date gas sensors: high-temperature semi conducting oxides and ambient temperature GasFET devices. Meas Sci Technol 19:1–18 CrossRef
22.
go back to reference Guth U (1975) Water vapor electrolysis by means of solid oxide electrolytes. Dissertation, University of Greifswald, Germany Guth U (1975) Water vapor electrolysis by means of solid oxide electrolytes. Dissertation, University of Greifswald, Germany
23.
go back to reference Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5:7050–7059 CrossRef Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5:7050–7059 CrossRef
26.
go back to reference De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110 CrossRef De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110 CrossRef
27.
go back to reference Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO 2 to hydrocarbons at copper. J Electroanal Chem 594:1–19 CrossRef Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO 2 to hydrocarbons at copper. J Electroanal Chem 594:1–19 CrossRef
28.
go back to reference Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1:385–391 CrossRef Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1:385–391 CrossRef
29.
go back to reference Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electro-chemical conversion and utilization of CO 2. Catal Sci Technol 2:19–28 CrossRef Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electro-chemical conversion and utilization of CO 2. Catal Sci Technol 2:19–28 CrossRef
30.
go back to reference Jhong H-R, Ma S, Kenis P (2013) Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199 CrossRef Jhong H-R, Ma S, Kenis P (2013) Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199 CrossRef
31.
go back to reference Jones J-P, Prakash GKS, Olah GA (2014) Electrochemical CO 2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466 CrossRef Jones J-P, Prakash GKS, Olah GA (2014) Electrochemical CO 2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466 CrossRef
32.
go back to reference Martin AJ, Larrazabal GO, Perez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2: lessons from water electrolysis. Green Chem 17:5114–5130 CrossRef Martin AJ, Larrazabal GO, Perez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2: lessons from water electrolysis. Green Chem 17:5114–5130 CrossRef
33.
go back to reference Endrodi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janaky J (2017) Continuous-flow electroreduction of carbondioxide. Prog Energy Combust Sci 62:133–154 CrossRef Endrodi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janaky J (2017) Continuous-flow electroreduction of carbondioxide. Prog Energy Combust Sci 62:133–154 CrossRef
36.
go back to reference Thorson MR, Siil KI, Kenis PJA (2013) Effect of cations on the electro-chemical conversion of CO 2 to CO. J Electrochem Soc 160:F69–F74 CrossRef Thorson MR, Siil KI, Kenis PJA (2013) Effect of cations on the electro-chemical conversion of CO 2 to CO. J Electrochem Soc 160:F69–F74 CrossRef
38.
go back to reference Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO 2 reduction via field-induced reagent concentration. Nature 537:382–386. https://​doi.​org/​10.​1038/​nature19060 CrossRef Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO 2 reduction via field-induced reagent concentration. Nature 537:382–386. https://​doi.​org/​10.​1038/​nature19060 CrossRef
39.
go back to reference Schmid G, Fleischer M (2015) Direct electrochemical conversion of CO 2 into valuable products, solar light for energy production and storage: a look into the future. University of Zürich, Switzerland, 26–27 November 2015 Schmid G, Fleischer M (2015) Direct electrochemical conversion of CO 2 into valuable products, solar light for energy production and storage: a look into the future. University of Zürich, Switzerland, 26–27 November 2015
40.
go back to reference Jörissen J, Turek T, Weber R (2011) Energy saving in electrolysis: chlorine production with oxygen depolarized cathodes. Chem unserer Zeit 45:172–183 CrossRef Jörissen J, Turek T, Weber R (2011) Energy saving in electrolysis: chlorine production with oxygen depolarized cathodes. Chem unserer Zeit 45:172–183 CrossRef
42.
go back to reference Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Upscaling and continuous operation of electrochemical CO 2 to CO conversion in aqueous solutions on silver gas diffusion electrodes, J CO 2 Utilization 24:454–462 Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Upscaling and continuous operation of electrochemical CO 2 to CO conversion in aqueous solutions on silver gas diffusion electrodes, J CO 2 Utilization 24:454–462
43.
go back to reference Reller C, Krause R, Neubauer S, Schmid G, Fleischer M (2015) CO 2-to-value direct electrocatalytic reduction of CO 2 towards chemical feedstock. In: 48. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 11–13 March 2015 Reller C, Krause R, Neubauer S, Schmid G, Fleischer M (2015) CO 2-to-value direct electrocatalytic reduction of CO 2 towards chemical feedstock. In: 48. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 11–13 March 2015
44.
go back to reference Schmid B, Reller C, Krause R, Fleischer M, Dorta R, Schmid G (2016) High Faradaic efficiencies for non gaseous oxygenates in copper catalyzed CO 2 electro-reduction at high current densities. In: 49. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 16–18 March 2016 Schmid B, Reller C, Krause R, Fleischer M, Dorta R, Schmid G (2016) High Faradaic efficiencies for non gaseous oxygenates in copper catalyzed CO 2 electro-reduction at high current densities. In: 49. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 16–18 March 2016
45.
go back to reference Schmid G, Reller C, Krause RK, Schmid B, Neubauer SS, Rucki A, Wiesner K, Magori E, Jeanty P, Fleischer M (2016) Single step direct electro catalytic reduction of CO 2 towards CO and hydrocarbons. In: 229th ECS meeting, San Diego, USA, 29 May–02 June 2016 Schmid G, Reller C, Krause RK, Schmid B, Neubauer SS, Rucki A, Wiesner K, Magori E, Jeanty P, Fleischer M (2016) Single step direct electro catalytic reduction of CO 2 towards CO and hydrocarbons. In: 229th ECS meeting, San Diego, USA, 29 May–02 June 2016
46.
go back to reference Dinh C-T, Burdyny T, Kibria G, Seifitokaldani A, Gabardo CM, de Arquer FPG, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH (2018) CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787 CrossRef Dinh C-T, Burdyny T, Kibria G, Seifitokaldani A, Gabardo CM, de Arquer FPG, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH (2018) CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787 CrossRef
47.
go back to reference Engelbrecht A, Uhlig C, Stark O, Hämmerle M, Schmid G, Magori E, Wiesner-Fleischer K, Fleischer M, Moos R (2018) On the electrochemical CO 2 reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. J Electrochem Soc 165:J3059–J3068 CrossRef Engelbrecht A, Uhlig C, Stark O, Hämmerle M, Schmid G, Magori E, Wiesner-Fleischer K, Fleischer M, Moos R (2018) On the electrochemical CO 2 reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. J Electrochem Soc 165:J3059–J3068 CrossRef
Metadata
Title
Industrial Approach for Direct Electrochemical CO2 Reduction in Aqueous Electrolytes
Authors
Maximilian Fleischer
P. Jeanty
K. Wiesner-Fleischer
O. Hinrichsen
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-58006-6_12

Premium Partner