DE

## Swipe to navigate through the chapters of this book

Published in:

2021 | OriginalPaper | Chapter

# Industrial Emissions Control Technologies: Introduction

Authors : Szymon Kwiatkowski, Merve Polat, Weijia Yu, Matthew Stanley Johnson

Published in:

Publisher: Springer US

## Excerpt

Aerosol
Aerosols are suspensions of solid or liquid particles in a gas and occur when mixing from diffusion and circulation is more rapid than gravitational settling. In common usage, “aerosol” can refer to the particulate matter. Atmospheric particulate matter can be emitted directly (“primary aerosol”) or formed in the atmosphere by gas-to-particle conversion processes (“secondary aerosol”). Atmospheric aerosol particles range in size from a few nanometers (nm) to tens of micrometers (μm) in diameter [ 1].
By-Product
By-products are formed in emissions control processes due to incomplete mineralization. Ideally, pollution is completely broken down or trapped; often this is not the case.
Contact Time
The contact time t is a crucial metric in characterizing a pollution control system, aiding design and allowing comparison between different systems. It is the ratio between the length of the treatment system l, for example, the contact region of a scrubber, catalyst, or adsorbent, and the velocity of air flow v. In all, $$t=l/v$$. The treatment system can be described using a first-order removal rate k, linking the pollution’s input and output concentrations C out and C in [ 2]:
C out =  C in ·  e kt
Energy Intensity
The energy intensity in the pollution control system can be described using the specific energy input (energy input per mass of air, e.g., J/kg) or the volumetric energy input, also called the energy density (e.g., J/m 3).
Explosion Limits and Range
A mixture of a given combustible compound in the air is typically explosive over a range extending from the lower explosion limit to the upper explosion limit [ 3]. The limits are given in %(v/v). The lower limit is the concentration below which flame cannot spread and vapor doesn’t ignite from a spark. The upper limit is the concentration above which a flame does not spread. For example, the explosion range for ammonia is 15–28% [ 3]; for methane, 5–15% [ 3]; for benzene, 1.2–7.8% [ 3]; and for formaldehyde, 7.0–73% [ 4].
Exposure Limit
The exposure limit describes the legally allowable average concentration a human can be exposed to for a given period. It can be expressed as an 8-hour time-weighted average or a yearly average. Exposure limits assure workers health and safety in different fields of employment.
Externality
An externality is a cost or benefit imposed on a third party unrelated to those who buy and sell [ 5]. Positive or negative effects on the third party are called positive and negative externalities, respectively [ 6]. For example, if one party buys a tree and plants it, the buyer and seller benefit, and others may also benefit from the shade and fruit. Or, if one party buys a leaf blower with a polluting two-stroke engine, buyer and seller benefit, but others may be impacted by air pollution and noise.
Global Warming Potential (GWP)
The global warming potential is a metric that allows direct comparison of many different climate forcing agents. The GWP represents the amount of heat trapped in the atmosphere by a kilogram of the compound of interest relative to the heat trapped by a kilogram of CO 2. Heat-trapping is determined by integrating the radiative forcing over a defined time period called the time horizon [ 7]. For example, the global warming potential for methane is 72 over a 20-year time horizon [ 8].
Green Chemistry
Green chemistry is a pollution prevention method that focuses on reducing the use and production of hazardous substances.
Pollution
Pollution is any substance introduced into the environment that has harmful effects.
Removal Efficiency
The removal efficiency (RE%) is a measure of a pollution control system. It is determined for a specific component based on its concentration at the inlet ( C in) and outlet ( C out) [ 2]. $$RE\%=\left(1-\frac{C_{out}}{C_{in}}\right)\cdotp 100$$. Note that the removal efficiency, by definition, does not consider the formation of by-products.
Pressure Drop
Pressure drop is a difference in pressure between two defined points[ 2].
Δ p = p 2 −  p 1.
For example, there will be a pressure drop across any system that resists air flow.

### Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

• über 102.000 Bücher
• über 537 Zeitschriften

aus folgenden Fachgebieten:

• Automobil + Motoren
• Bauwesen + Immobilien
• Elektrotechnik + Elektronik
• Energie + Nachhaltigkeit
• Finance + Banking
• Management + Führung
• Marketing + Vertrieb
• Maschinenbau + Werkstoffe
• Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

### Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

• über 67.000 Bücher
• über 390 Zeitschriften

aus folgenden Fachgebieten:

• Automobil + Motoren
• Bauwesen + Immobilien
• Elektrotechnik + Elektronik
• Energie + Nachhaltigkeit
• Maschinenbau + Werkstoffe

Jetzt Wissensvorsprung sichern!

### Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

• über 67.000 Bücher
• über 340 Zeitschriften

aus folgenden Fachgebieten:

• Bauwesen + Immobilien
• Finance + Banking
• Management + Führung
• Marketing + Vertrieb
• Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics, 3rd edn. Wiley, Hoboken
2.
Vallero DA (2008) Fundamentals of air pollution. Elsevier, Amsterdam/Boston
3.
Yaws CL, Braker W (2001) Matheson gas data book. Matheson Tri-Gas, Parsippany/New York. [Online]. https://​openlibrary.​org/​books/​OL3945924M/​Matheson_​gas_​data_​book. Accessed 20 June2019
4.
5.
Buchanan JM, Craig Stubblebine W (1962) The Suntory and Toyota International Centres for Economics and Related Disciplines. Economica 371–384
6.
Simpson BP (2007) An economic, political, and philosophical analysis of externalities. Reason Papers 123–163
7.
Harnung SE, Johnson MS (2012) Chemistry and the environment. Cambridge University Press, New York CrossRef
8.
What are the properties of a greenhouse gas?American Chemical Society. [Online]. https://​www.​acs.​org/​content/​acs/​en/​climatescience/​greenhousegases/​properties.​html. Accessed 20 June 2019
9.
Davis WT, Air & Waste Management Association (2000) Air pollution engineering manual. Wiley, New York
10.
Landes DS (2012) The unbound Prometheus: technological change and industrial development in Western Europe from 1700s to the present, 2nd edn. Cambridge University Press, pp 1–20
11.
Markham A (1994) A brief history of pollution. Earthscan, London
12.
Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric Lead pollution two millennia ago by Greek and Roman civilizations. Science 265:1841–1843 CrossRef
13.
Hong S, Candelone JP, Soutif M, Boutron CF (1996) A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. J Chem Physicshe Sci Total Environ 188:183–193 CrossRef
14.
Clarke CA, Mani GS, Wynne G (Oct. 1985) Evolution in reverse: clean air and the peppered moth. Biol J Linn Soc 26(2):189–199 CrossRef
15.
Lee B-J, Kim B, Lee K (2014) Air pollution exposure and cardiovascular disease. Toxicol Res 30(2):71–75 CrossRef
16.
Zivin JG, Neidell M (2012) The impact of pollution on worker productivity. Am Econ Rev 102(7):3652–3673 CrossRef
17.
Guerreiro C, González Ortiz A, deLeeuw F, et al (2016) Air quality in Europe – 2016 report. [Online]. https://​www.​eea.​europa.​eu/​publications/​air-quality-in-europe-2016/​download. Accessed 20 June 2019
18.
Guerreiro C, González Ortiz A, deLeeuw F, et al (2018) Air quality in Europe – 2018 report. [Online]. https://​www.​eea.​europa.​eu/​publications/​air-quality-in-europe-2018/​download. Accessed 20 June 2019
19.
EEA (2018) NEC Directive reporting status 2018. European Environmental Agency. [Online]. https://​www.​eea.​europa.​eu/​themes/​air/​national-emission-ceilings/​nec-directive-reporting-status-2018. Accessed 20 June 2019
20.
Environment – European Commission, “Standards – Air Quality.” [Online]. Available: http://​ec.​europa.​eu/​environment/​air/​quality/​standards.​htm?​fbclid=​IwAR2l33HWjOAB-lSqPBD3_​U2O09zkmy0S7Or2J​rV9BcfdX82h8O5t7​U8BqY8. Accessed 22 Mar 2019
21.
Zhang Q, Streets DG, He K, Klimont Z (2007) Major components of China’s anthropogenic primary particulate emissions. Environ Res Lett 2(4):045027 CrossRef
22.
WHO, Ambient (outdoor) air quality and health (2018). [Online]. https://​www.​who.​int/​news-room/​fact-sheets/​detail/​ambient-(outdoor)-air-quality-and-health. Accessed 08 Feb 2019
23.
World Bank (2016) The Cost of Air Pollution strengthening the economic case for action. The World Bank and Institute for Health Metrics and Evaluation. University of Washington, Seattle
24.
U.S. EPA (2016) Health and environmental effects of particulate matter (PM). US EPA. [Online]. https://​www.​epa.​gov/​pm-pollution/​health-and-environmental-effects-particulate-matter-pm. Accessed 20 June 2019
25.
Coakley JA, Bernstein RL, Durkee PA (1987) Effect of ship-stack effluents on cloud reflectivity. Science 237(4818):1020–1022 CrossRef
26.
Occupational Safety and Health Administration OSHA Occupational chemical database. [Online]. Available: https://​www.​osha.​gov/​chemicaldata/​chemResult.​html?​RecNo=​183&​fbclid=​IwAR3w0lrVXjG1UL​pUVaiW62ZIqtgSNh​vWUp5LEcSZ489kIz​s-lvSmUWWN6AI. Accessed 22 Mar 2019
27.
Olivier JGJ, Schure KM, Peters JAHW (2017) Trends in global CO 2 and total greenhouse gas emissions 2017 report trends in global CO 2 and total greenhouse gas emissions: 2017 report
28.
Carbon Dioxide | Wisconsin Department of Health Services. [Online]. Available: https://​www.​dhs.​wisconsin.​gov/​chemical/​carbondioxide.​htm. Accessed 12 Mar 2019
29.
Fioletov VE, Mclinden, CA, Krotkov, N, Li, C Lifetimes and emissions of SO 2 from point sources estimated from OMI
30.
U.S. EPA (2018) Report on the environment: sulfur dioxide emissions. United States Environmental Protection Agency. [Online]. https://​cfpub.​epa.​gov/​roe/​indicator_​pdf.​cfm?​i=​22. Accessed 20 June 2019
31.
Department of the Environment and Heritage, “Sulfur dioxide (SO2) – Air quality fact sheet” 2005. [Online]. Available: http://​www.​environment.​gov.​au/​protection/​publications/​factsheet-sulfur-dioxide-so2. Accessed 08 Feb 2019
32.
Liu F, Beirle S, Zhang Q, Dörner S, He K, Wagner T (2016) NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmos Chem Phys 16:5283–5298
33.
Pinder RW, Gilliland AB, Dennis RL (Jun. 2008) Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys Res Lett 35(12):n/a
34.
CDC – NIOSH Pocket Guide to Chemical Hazards – Ammonia. [Online]. Available: https://​www.​cdc.​gov/​niosh/​npg/​npgd0028.​html?​fbclid=​IwAR0MCQtn7Jf-5yTzf-XvlQcVL3n45RcFjo​zQ0P_​4EB2KwnCyxnJKpPl​YDI4. Accessed 22 Mar 2019
35.
Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20(11):8092–8131
36.
37.
ATSDR – Public Health Statement: Ammonia. [Online]. Available: https://​www.​atsdr.​cdc.​gov/​phs/​phs.​asp?​id=​9&​tid=​2. Accessed 22 Mar 2019
39.
Chemical hazards compendium. GOV. UK. [Online]. https://​www.​gov.​uk/​government/​collections/​chemical-hazards-compendium. Accessed 20 June 2019
40.
AR5 Synthesis Report: Climate Change 2014 – IPCC. [Online]. https://​www.​ipcc.​ch/​report/​ar5/​syr/​. Accessed 20 June 2019
41.
U.S. EPA(2012) Benzene. United States Environmental Protection Agency. [Online]. https://​www.​epa.​gov/​sites/​production/​files/​2016-09/​.​.​.​/​benzene.​pdf
42.
Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572 CrossRef
43.
Long Term Effects of Volatile Organic Compounds (Benzene, Formaldehyde) [Online]. Available: https://​foobot.​io/​guides/​long-term-effects-of-volatile-organic-compounds.​php. Accessed 22 Mar 2019
44.
World Health Organization (ed) (2000) Air quality guidelines for Europe, 2nd edn. World Health Organization, Regional Office for Europe, Copenhagen
45.
U.S. EPA(2015) Volatile organic compounds emissions. United States Environmental Protection Agency. [Online]. https://​cfpub.​epa.​gov/​roe/​indicator_​pdf.​cfm?​i=​23. Accessed 20 June 2019
46.
World Health Organization Regional Office for Europe (2007) Health risks of heavy metals from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen. [Online]. http://​www.​euro.​who.​int/​_​_​data/​assets/​pdf_​file/​0007/​78649/​E91044.​pdf. Accessed 20 June 2019
47.
Keeling CD, Piper SC, Bacastow RB, et al (2005) Atmospheric CO 2 and 13CO 2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Baldwin IT, Caldwell MM, Heldmaier G, et al (eds) A history of atmospheric CO 2 and its effects on plants, animals, and ecosystems. Springer New York, New York, pp 83–113
48.
D. C. Carbon Brief. (2012). How long do greenhouse gases stay in the air? | Environment | The Guardian. [Online]. Available: https://​www.​theguardian.​com/​environment/​2012/​jan/​16/​greenhouse-gases-remain-air. Accessed 15 Jan 2019
49.
Main sources of carbon dioxide emissions | What’s your impact. [Online]. Available: https://​whatsyourimpact.​org/​greenhouse-gases/​carbon-dioxide-emissions. Accessed 08 Feb 2019
50.
Department of the Environment and Heritage, Nitrogen dioxide (NO2) – Air quality fact sheet 2005. [Online]. Available: http://​www.​environment.​gov.​au/​protection/​publications/​factsheet-nitrogen-dioxide-no2. Accessed 08 Feb 2019
51.
Compound Database (2019) National Center for Biotechnology Information. [Online]. https://​pubchem.​ncbi.​nlm.​nih.​gov/​compound/​222
52.
Gong L, Lewicki R, Griffin RJ, et al (2013) Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos Environ 77:893–900
53.
European Union Network for the Implementation and Enforcement of Environmental Law, Air pollution from agriculture: ammonia exceeds emission limits in 2015 2017 [Online]. Available: https://​www.​impel.​eu/​air-pollution-from-agriculture-ammonia-exceeds-emission-limits-in-2015/​. Accessed 08 Feb 2019
54.
Sun J, Wu F, Hu B, Tang G, Zhang J, Wang Y (2016) VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos Environ 141:560–570 CrossRef
55.
Working Group on Arsenic, Cadmium And Nickel (2000) Compounds ambient air pollution by AS, CD and NI compounds. EU. [Online]. http://​ec.​europa.​eu/​environment/​archives/​air/​pdf/​pp_​as_​cd_​ni.​pdf. Accessed 20 June 2019
56.
Li H, Qian X, Geng Wang Q (2013) Heavy metals in atmospheric particulate matter: a comprehensive understanding is needed for monitoring and risk mitigation. Environ SciTechnol 13:28–28
57.
Maud J, Rumsby P, Great Britain, Environment Agency (2008) A review of the toxicity of arsenic in air. Environment Agency, Bristol
58.
59.
Zhang Z, Chau PYK, Lai HK, Wong CM (2009) A review of effects of particulate matter-associated nickel and vanadium species on cardiovascular and respiratory systems. Int J Environ Health Res 19:175–185 CrossRef
60.
Wani AL, Ara A, Usmani JA (Jun. 2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64 CrossRef
61.
Carriazo F (2016) Economics and air pollution. Air quality – measurement and modeling
62.
Panayotou T (1999) The economics of environments in transition. Environ Dev Econ 4:401–412 CrossRef
63.
Shafik NS (1992) Economic growth and environmental quality: time series and cross-country evidence. The World Bank, Washington, p 1
64.
Kosonen K (2012) Regressivity of environmental taxation: myth or reality? EU. [Online]. https://​ec.​europa.​eu/​taxation_​customs/​sites/​taxation/​files/​docs/​body/​taxation_​paper_​32_​en.​pdf. Accessed 20 June 2019
65.
Reform of the EU carbon market
66.
CO2 European Emission Allowances PRICE Today | CO2 European Emission Allowances Spot Price Chart | Live Price of CO2 European Emission Allowances per Ounce | Markets Insider. [Online]. Available: https://​markets.​businessinsider.​com/​commodities/​co2-emissionsrechte. Accessed 27 Feb 2019
67.
Finus, M Game theory and international environmental co-operation: a survey with an application to the Kyoto-Protocol – FEEM working papers – Publications – Fondazione Eni Enrico Mattei (FEEM).” [Online]. Available: https://​www.​feem.​it/​en/​publications/​feem-working-papers-note-di-lavoro-series/​game-theory-and-international-environmental-co-operation-a-survey-with-an-application-to-the-kyoto-protocol/​. Accessed 27 Feb 2019
68.
Sunstein CR (2006) Montreal versus Kyoto: a tale of two protocols. John M. Olin Program in Law and Economics working paper 302. [Online]. https://​chicagounbound.​uchicago.​edu/​journal_​articles/​8476/​. Accessed 20 June 2019
69.
Stradling D, Thorsheim P (1999) The smoke of great cities: British and American efforts to control air pollution, 1860–1914. Enviro Hist Durh N C 4:6–31
70.
U.S. EPA (2007) The plain English guide to the clean air act. United States Environmental Protection Agency. [Online]. https://​www.​epa.​gov/​sites/​production/​files/​2015-08/​documents/​peg.​pdf. Accessed 20 June 2019
71.
Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York
72.
73.
Pui DYH, Qi C, Stanley N, Oberdörster G, Maynard A (2008) Recirculating air filtration significantly reduces exposure to airborne nanoparticles. Environ Health Perspect 116(7):863–866 CrossRef
74.
Walsh DC (1996) Recent advances in the understanding of fibrous filter behaviour under solid particle load. Filtr Sep 33(6):501–506 CrossRef
75.
Air Pollution Control Technology Fact Sheet EPA-452/F-03-022
76.
Air Pollution Control Technology Fact Sheet EPA-CICA Fact Sheet Catalytic Incinerator EPA-452/F-03-018
77.
Air Pollution Control Technology Fact Sheet EPA-CICA Fact Sheet Incinerator-Recuperative Type EPA-452/F-03-020
78.
Air Pollution Control Technology Fact Sheet EPA-452/F-03-021
79.
Skodras G, Kaldis SP, Sofialidis D, Faltsi O, Grammelis P, Sakellaropoulos GP (2006) Particulate removal via electrostatic precipitators—CFD simulation. Fuel Process Technol 87(7):623–631
80.
Védrine J (2018) Fundamentals of heterogeneous catalysis. Elsevier, pp 1–41
82.
Bosch C, Mittasch A (1917) Catalytic production of ammonia. BASF SE. [Online]. https://​patents.​google.​com/​patent/​US1225755A/​en. Accessed 20 June 2019
83.
Overview of the Haber-Bosch Process [Online]. Available: https://​www.​thoughtco.​com/​overview-of-the-haber-bosch-process-1434563. Accessed 12 Mar 2019
84.
Atkins P, Paula JD, Friedmann R (2009) Physical chemistry: quanta, matter and change. Oxford University Press, Oxford
85.
Jeffrey WLH, Steinfeld L, Francisco JS (1998) Chemical kinetics and dynamics, 2nd edn. Prentice Hall, Upper Saddle River
86.
Yue H et al (2018) Low temperature selective catalytic reduction of NOX with NH3 by activated coke loaded with FexCoyCezOm: the enhanced activity, mechanism and kinetics. Fuel 233(January):188–199
87.
Eley DD (1949) Mechanisms of hydrogen catalysis. Q Rev ChemSoc 3:209–225
88.
Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B Environ 70(1–4):2–15 CrossRef
89.
Yan Q, Yang R, Zhang Y, Umar A, Huang Z, Wang Q (2016) A comprehensive review on selective catalytic reduction catalysts for NO x emission abatement from municipal solid waste incinerators. Environ Prog Sustain Energy 35(4):1061–1069 CrossRef
90.
Su SH, Feng SY, Zhao YF et al (2011) Comparison of three types of NH 3-SCR catalysts. Appl Mech Mater 130–134:418–421
91.
Air Pollution Control Technology Fact Sheet EPA-452/F-03-032 [Online]. https://​www.​epa.​gov/​sites/​production/​files/​2015-08/​documents/​peg.​pdf. Accessed 20 June 2019
93.
Wiȩckowska J (1995) Catalytic and adsorptive desulphurization of gases. Catal Today 24(4):405–465 CrossRef
94.
Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109(1–3):113–139 CrossRef
95.
Wet and Dry Industrial Scrubbers Differences – Honiron. [Online]. Available: https://​www.​honiron.​com/​differences-wet-dry-industrial-scrubbers/​. Accessed 08 Mar 2019
96.
A steam powered submarine: the Ictíneo – low-tech magazine. [Online]. Available: https://​www.​lowtechmagazine.​com/​2008/​08/​submarines-1.​html#. Accessed 08 Mar 2019
97.
Wan Z, Zhu M, Chen S, Sperling D (Feb. 2016) Pollution: three steps to a green shipping industry. Nature 530(7590):275–277 CrossRef
98.
Kastner JR, Das KC (2002) Wet scrubber analysis of volatile organic compound removal in the rendering industry. J Air Waste Manage Assoc 52(4):459–469 CrossRef
99.
Kastner JR, Das KC (Oct. 2005) Comparison of chemical wet scrubbers and biofiltration for control of volatile organic compounds using GC/MS techniques and kinetic analysis. J Chem Technol Biotechnol 80(10):1170–1179 CrossRef
100.
Wet scrubber for exhaust gas cleaning [Online]. Available: https://​www.​crystec.​com/​ksiwete.​htm. Accessed 08 Mar 2019
101.
Woodard & Curran, Inc. and Woodard & Curran, Inc. (2006) Treatment of air discharges from industry. Ind Waste Treat Handb, pp 335–361, Jan
102.
Wet scrubber – energy education [Online]. Available: https://​energyeducation.​ca/​encyclopedia/​Wet_​scrubbe. Accessed 08 Mar 2019
103.
Dry scrubber – energy education. [Online]. Available: https://​energyeducation.​ca/​encyclopedia/​Dry_​scrubber. Accessed 08 Mar 2019
104.
Feilberg A, Sommer SG (2013) Ammonia and malodorous gases: sources and abatement technologies. In: Animal manure recycling. Wiley, pp 153–175
105.
Srivastava RK, Jozewicz W, Singer C (2001) SO2 scrubbing technologies: a review. Environ Prog 20(4):219–228 CrossRef
106.
Kaminski J (2003) Technologies and costs of SO2-emissions reduction for the energy sector. Appl Energy 75(3–4):165–172 CrossRef
107.
Poullikkas A (2015) Review of design, operating, and financial considerations in flue gas desulfurization systems. Energy Technol Policy 2(1):92–103 CrossRef
108.
Yang H et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27 CrossRef
109.
Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO 2 from flue gases: commercial trends. [Online]. http://​citeseerx.​ist.​psu.​edu/​viewdoc/​download? Accessed 20 June 2019
110.
Khalilpour R, Mumford K, Zhai H et al (2015) Membrane-based carbon capture from flue gas: a review. J Cleaner Prod 103:286–300
111.
EU (2018) A clean planet for all a european strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. [Online]. https://​ec.​europa.​eu/​transparency/​regdoc/​rep/​1/​2018/​EN/​COM-2018-773-F1-EN-MAIN-PART-1.​PDF?​fbclid=​IwAR0iQy7n53NioH​B5lAymYrFaxswrmv​e5ZBxlh5TuNYYMxS​bg0ELNj7wdZXw. Accessed 20 June 2019
112.
Van Groenestijn JW (2001) Bioscrubbers. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Springer, Dordrecht, pp 133–162
113.
Khan FI, Ghoshal AKr (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545 CrossRef
114.
Ghoshal AK, Manjare SD (2002) Selection of appropriate adsorption technique for recovery of VOCs: an analysis. J Loss Prev Process Ind 15(6):413–421 CrossRef
115.
Liu Y, Feng X, Lawless D (2006) Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J Membr Sci 271(1–2):114–124
116.
Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348
117.
Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12(5):745–769 CrossRef
118.
Tlili N, Grévillot G, Vallières C (2009) Carbon dioxide capture and recovery by means of TSA and/or VSA. Int J Greenh Gas Control 3(5):519–527 CrossRef
119.
Pezolt DJ, Collick SJ, Johnson HA, Robbins LA (1997) Pressure swing adsorption for VOC recovery at gasoline loading terminals. Environ Prog 16(1):16–19 CrossRef
120.
Cruz-Núñez X, Hernández-Solís JM, Ruiz-Suárez LG (2003) Evaluation of vapor recovery systems efficiency and personal exposure in service stations in Mexico City. Sci Total Environ 309(1–3):59–68 CrossRef
121.
Kimmerle K, Bell CM, Gudernatsch W, Chmiel H (1988) Solvent recovery from air. J Membr Sci 36:477–488 CrossRef
122.
Wang T, Lackner KS, Wright A (2011) Moisture swing sorbent for carbon dioxide capture from ambient air. Environ Sci Technol 45(15):6670–6675 CrossRef
123.
Adnew GA et al (2016) Gas-phase advanced oxidation as an integrated air pollution control technique. AIMS Environ Sci 3(March):141–158 CrossRef
124.
Meusinger C et al (2017) Treatment of reduced Sulphur compounds and SO 2 by gas phase advanced oxidation. Chem Eng J 307:427–434 CrossRef
125.
Johnson MS, Nilsson EJK, Svensson EA, Langer S (2014) Gas-phase advanced oxidation for effective, efficient in situ control of pollution. Environ Sci Technol 48:8768–8776 CrossRef
126.
Meusinger C (2014) Gasphasen-EmissionskontrollefürGießereien.Giesserei-Praxis 4:166–169
127.
US EPA (2013) Basics of green chemistry. US EPA. [Online]. https://​www.​epa.​gov/​greenchemistry/​basics-green-chemistry. Accessed 20 Jun 2019
128.
129.
Li C-J, Trost BM (2008) Green chemistry for chemical synthesis. Proc Natl Acad Sci U S A 105:13197–13202 CrossRef
130.
E-factor [Online]. Available: https://​www.​sheldon.​nl/​roger/​efactor.​html. Accessed 21 Mar 2019
131.
Poliakoff M, Licence P (2007) Green chemistry. Nature 450(7171):810–812 CrossRef
132.
Lelieveld J, Klingmüller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596
133.
American Chemical Society, “Green Chemistry Examples” [Online]. Available: https://​www.​acs.​org/​content/​acs/​en/​greenchemistry/​what-is-green-chemistry/​examples.​html. Accessed 22 Mar 2019
134.
Geurts J, Bouman J, Overbeek A (2008) New waterborne acrylic binders for zero VOC paints. J Coat Technol Res 5:57–63
135.
U.S. EPA. Plastics: material-specific data. United States Environmental Protection Agency. [Online]. https://​www.​epa.​gov/​facts-and-figures-about-materials-waste-and-recycling/​plastics-material-specific-data.​ Accessed 8 Mar 2019
136.
Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste ManagAssoc 51:809–847
137.
Toda M et al (Nov. 2005) Biodiesel made with sugar catalyst. Nature 438(7065):178–178 CrossRef
138.
Transforming our world: the 2030 Agenda for Sustainable Development. Sustainable Development Knowledge Platform. [Online]. Available: https://​sustainabledevel​opment.​un.​org/​post2015/​transformingourw​orld. Accessed 24 Mar 2019
139.
Kemp KC et al (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5(8):3149 CrossRef
140.
Zhang S et al (Dec. 2016) Modeling energy efficiency to improve air quality and health effects of China’s cement industry. Appl Energy 184:574–593 CrossRef
141.
Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML (2015) A survey of wireless sensor network based air pollution monitoring systems. Sensors (Basel) 15(12):31392–31427 CrossRef
142.
Rao S et al (2017) Future air pollution in the shared socio-economic pathways. Glob Environ Chang 42:346–358 CrossRef