Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

16. Industriebeispiele und Anwendungsbereiche

Authors : Thomas Schwarz, Christoph Gürtler, Torsten Müller, Christophe Mihalcea, Freya Burton, Robert Conrado, Sean Simpson, Biniam T. Maru, Pradeep C. Munasinghe, Shawn W. Jones, Bryan P. Tracy, Ronnie Machielsen, Ross Gordon, Deepak Pant, Metin Bulut, Heleen De Wever, Frank Kensy, Stefan Verseck, Christian Janke

Published in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Die industrielle Verwendung von C1-Gasen hat einerseits Tradition (z. B. Fischer-Tropsch-Katalyse), andererseits werden neue Ansätze erprobt und befinden sich z. T. an der Schwelle zur Kommerzialisierung. Kap. 16 stellt beispielhaft Entwicklungs-, Pilot-, Demonstrations- und Produktionsverfahren unterschiedlicher Unternehmen vor, darunter VITO aus Belgien, BASF, b.fab und Covestro aus Deutschland, AlgaTechnologies aus Israel, AlgaeParc und Photanol aus den Niederlanden sowie Cellana, Cyanotech, Lanzatech und White Dog Labs aus den USA.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Van der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO 2 as feedstock: insight from an industrial case study. Green Chem 14:3272 Van der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO 2 as feedstock: insight from an industrial case study. Green Chem 14:3272
2.
go back to reference Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Jlungdahl pathway of CO 2 fixation. Biochim Biophys Acta, Proteins Proteomics 1784(12):1873–1898 Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Jlungdahl pathway of CO 2 fixation. Biochim Biophys Acta, Proteins Proteomics 1784(12):1873–1898
3.
go back to reference De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P (2017) Syngas biorefinery and syngas utilization. In: Wagemann K, Tippkötter N (Hrsg) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, S 1–34 De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P (2017) Syngas biorefinery and syngas utilization. In: Wagemann K, Tippkötter N (Hrsg) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, S 1–34
4.
go back to reference Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemical production. Curr Opin Biotechnol 33:60–72 Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemical production. Curr Opin Biotechnol 33:60–72
5.
go back to reference Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO 2 fixation for anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800 Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO 2 fixation for anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800
6.
go back to reference Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic energetic analyses of non-photosynthetic CO 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395 Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic energetic analyses of non-photosynthetic CO 2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395
7.
go back to reference Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210 Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210
8.
go back to reference Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381 Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381
11.
go back to reference Hellingwerf KJ, Teixeira de Mattos MJ (2009) Alternative routes to biofuels: light-driven biofuel formation from CO 2 and water based on the ‘photanol’ approach. J Bacteriol 142:87–90 Hellingwerf KJ, Teixeira de Mattos MJ (2009) Alternative routes to biofuels: light-driven biofuel formation from CO 2 and water based on the ‘photanol’ approach. J Bacteriol 142:87–90
17.
go back to reference Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072 Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072
19.
go back to reference ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO 2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370 ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO 2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370
21.
go back to reference Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543 Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543
22.
go back to reference Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723 Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723
23.
go back to reference Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716 Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716
24.
go back to reference Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22:441–448 Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22:441–448
25.
go back to reference Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273 Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273
26.
go back to reference May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233 May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233
27.
go back to reference Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Commun 5:3242 Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Commun 5:3242
28.
go back to reference Jhong HR, Ma S, Kenis PJ (2013) Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199 Jhong HR, Ma S, Kenis PJ (2013) Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199
29.
go back to reference Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170 Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170
30.
go back to reference Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO 2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116 Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO 2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116
32.
go back to reference DNV – Det Norske Veritas (2007) Positionspapier. Carbon dioxide utilisation: electrochemical conversion of CO 2 – opportunities and challenges DNV – Det Norske Veritas (2007) Positionspapier. Carbon dioxide utilisation: electrochemical conversion of CO 2 – opportunities and challenges
33.
go back to reference Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343(6178):1520–1522 Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343(6178):1520–1522
34.
go back to reference Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310 Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310
36.
go back to reference Goetzberger A, Zastrow A (1981) Kartoffeln unter dem Kollektor. Sonnenenergie 3:19–22 Goetzberger A, Zastrow A (1981) Kartoffeln unter dem Kollektor. Sonnenenergie 3:19–22
37.
go back to reference Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9 Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9
38.
go back to reference Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–3863 Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–3863
39.
go back to reference Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW (2013) Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotechnol 24:1–9 Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW (2013) Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotechnol 24:1–9
40.
go back to reference Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306 Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
41.
go back to reference Leu S, Boussiba S (2014) Advances in the production of high-value product by microalgae. Ind Biotechnol 10(3):169–183 Leu S, Boussiba S (2014) Advances in the production of high-value product by microalgae. Ind Biotechnol 10(3):169–183
42.
go back to reference Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96 Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96
43.
go back to reference Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648 Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648
44.
go back to reference Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and perfomances. Biotechnol Progress 22:1490–1506 Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and perfomances. Biotechnol Progress 22:1490–1506
45.
go back to reference Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177 Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177
46.
go back to reference Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293 Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293
47.
go back to reference Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151 Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151
54.
go back to reference Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27 Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27
56.
go back to reference Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376–1376 Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376–1376
57.
go back to reference Lü J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466 Lü J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466
61.
go back to reference Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321 Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321
62.
go back to reference Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutraceuticals Assoc 3(4):24–30 Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutraceuticals Assoc 3(4):24–30
68.
go back to reference Milledge JJ (2012) Microalgae: commercial potential for fuel, food and feed. Food Sci Technol 26(1):28–31 Milledge JJ (2012) Microalgae: commercial potential for fuel, food and feed. Food Sci Technol 26(1):28–31
71.
go back to reference Boussiba S, Aflalo C (2005) An insight into the future of microalgal biotechnology. Innov Food Technol 28:37–39 Boussiba S, Aflalo C (2005) An insight into the future of microalgal biotechnology. Innov Food Technol 28:37–39
75.
go back to reference Keeling RF, Keeling CD (2017) Atmospheric monthly In Situ CO 2 Data – Mauna Loa Observatory, Hawaii. In: Scripps CO 2 Program Data, UC San Diego Library Digital Collections Keeling RF, Keeling CD (2017) Atmospheric monthly In Situ CO 2 Data – Mauna Loa Observatory, Hawaii. In: Scripps CO 2 Program Data, UC San Diego Library Digital Collections
76.
go back to reference Ebi KL, Ziska LH (2018) Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med 15^:e1002600 Ebi KL, Ziska LH (2018) Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med 15^:e1002600
77.
go back to reference Christianson DW (2018) Correction to structural and chemical biology of terpenoid cyclases. Chem Rev 118(24):11795 Christianson DW (2018) Correction to structural and chemical biology of terpenoid cyclases. Chem Rev 118(24):11795
78.
go back to reference Sharkey TD, Monson RK (2017) Isoprene research – 60 years later, the biology is still enigmatic. Plant Cell Environ 40:1671–1678 Sharkey TD, Monson RK (2017) Isoprene research – 60 years later, the biology is still enigmatic. Plant Cell Environ 40:1671–1678
79.
go back to reference Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143 Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143
80.
go back to reference Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530 Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530
81.
go back to reference Spanova M, Daum G (2011) Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Tech 113:1299–1320 Spanova M, Daum G (2011) Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Tech 113:1299–1320
82.
go back to reference Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373 Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373
84.
go back to reference Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166:17–26 Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166:17–26
85.
go back to reference Cailleux A, Cogny M, Allain P (1992) Blood Isoprene concentrations in humans and in some animal species. Biochem Med Metab B 47:157–160 Cailleux A, Cogny M, Allain P (1992) Blood Isoprene concentrations in humans and in some animal species. Biochem Med Metab B 47:157–160
86.
go back to reference Fleisher A, Fleisher Z (2004) Study of Dictamnus gymnostylis volatiles and plausible explanation of the “burning Bush” phenomenon. J Essent Oil Res 16:1–3 Fleisher A, Fleisher Z (2004) Study of Dictamnus gymnostylis volatiles and plausible explanation of the “burning Bush” phenomenon. J Essent Oil Res 16:1–3
87.
go back to reference Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:2460 Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:2460
88.
go back to reference Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532
89.
go back to reference Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A (2018) Literally green chemical synthesis of artemisinin from plant extracts. Angew Chem Int Ed Engl 57:5525–5528 Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A (2018) Literally green chemical synthesis of artemisinin from plant extracts. Angew Chem Int Ed Engl 57:5525–5528
92.
go back to reference Putter KM, van Deenen N, Unland K, Prufer D, Schulze Gronover C (2017) Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol 17:88 Putter KM, van Deenen N, Unland K, Prufer D, Schulze Gronover C (2017) Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol 17:88
93.
go back to reference Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102:6451–6458 Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102:6451–6458
94.
go back to reference Paul D, Bridges S, Burgess SC, Dandass Y, Lawrence ML (2008) Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J Bacteriol 190:5531–5532 Paul D, Bridges S, Burgess SC, Dandass Y, Lawrence ML (2008) Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J Bacteriol 190:5531–5532
95.
go back to reference Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH Range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-line product extraction. Front Microbiol 7:1773 Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH Range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-line product extraction. Front Microbiol 7:1773
96.
go back to reference Fernandez-Naveira A, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395 Fernandez-Naveira A, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395
97.
go back to reference Doll K, Ruckel A, Kampf P, Wende M, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41:1403–1416 Doll K, Ruckel A, Kampf P, Wende M, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41:1403–1416
98.
go back to reference Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234 Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234
99.
go back to reference Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32:369–380 Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32:369–380
100.
go back to reference Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116 Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116
101.
go back to reference Beck ZQ, Cervin MA, Chotani GK, Peres Caroline M, Sanford KJ, Scotcher MC, Wells DH, Whited GM (2013) Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms. WO/2013/181647 Beck ZQ, Cervin MA, Chotani GK, Peres Caroline M, Sanford KJ, Scotcher MC, Wells DH, Whited GM (2013) Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms. WO/2013/181647
102.
go back to reference Masahiro F, Akihiro U, Koichiro I, Jennewein S, Fischer R (2013) Recombinant cell, and method for producing isoprene. US9783828B2 Masahiro F, Akihiro U, Koichiro I, Jennewein S, Fischer R (2013) Recombinant cell, and method for producing isoprene. US9783828B2
103.
go back to reference Chen W, Liew F, Köpke M (2013) Recombinant microorganisms and uses therefore. WO/2013/180584 Chen W, Liew F, Köpke M (2013) Recombinant microorganisms and uses therefore. WO/2013/180584
104.
go back to reference Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM (2018) Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the Conversion of fructose and of syngas to mevalonate and isoprene. Appl Environ Microbiol 84(1):e01723–17 Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM (2018) Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the Conversion of fructose and of syngas to mevalonate and isoprene. Appl Environ Microbiol 84(1):e01723–17
105.
go back to reference Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO 2 to formate by a bacterial carbon dioxide reductase. Science 342:1382 binant microorganisms and uses therefore1385 Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO 2 to formate by a bacterial carbon dioxide reductase. Science 342:1382 binant microorganisms and uses therefore1385
Metadata
Title
Industriebeispiele und Anwendungsbereiche
Authors
Thomas Schwarz
Christoph Gürtler
Torsten Müller
Christophe Mihalcea
Freya Burton
Robert Conrado
Sean Simpson
Biniam T. Maru
Pradeep C. Munasinghe
Shawn W. Jones
Bryan P. Tracy
Ronnie Machielsen
Ross Gordon
Deepak Pant
Metin Bulut
Heleen De Wever
Frank Kensy
Stefan Verseck
Christian Janke
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_16

Premium Partner