Skip to main content
Top
Published in: Artificial Intelligence Review 5/2023

03-10-2022

Inference-based complete algorithms for asymmetric distributed constraint optimization problems

Authors: Dingding Chen, Ziyu Chen, Yanchen Deng, Zhongshi He, Lulu Wang

Published in: Artificial Intelligence Review | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Asymmetric distributed constraint optimization problems (ADCOPs) are an important framework for multiagent coordination and optimization, where each agent has its personal preferences. However, the existing inference-based complete algorithms that use local eliminations cannot be applied to ADCOPs, as the (pseudo) parents are required to transfer their private functions to their (pseudo) children to perform the local eliminations optimally. Rather than disclosing private functions explicitly to facilitate local eliminations, we solve the problem by enforcing delayed eliminations and propose the first inference-based complete algorithm for ADCOPs, named AsymDPOP. To solve the severe scalability problems incurred by delayed eliminations, we propose to reduce the memory consumption by propagating a set of smaller utility tables instead of a joint utility table, and the computation efforts by sequential eliminations instead of joint eliminations. To ensure the proposed algorithms can scale up to large-scale problems under the limited memory, we combine them with the memory-bounded inference by iteratively propagating the memory-bounded utility tables with the instantiation of cycle-cut (CC) nodes, where we propose to reduce the redundancy in bounded utility iterative propagation by enumerating CC nodes in different branches independently and propagating the utility tables within the memory limit only once. The empirical evaluation indicates that the proposed methods significantly outperform the state-of-the-art as well as the vanilla DPOP with PEAV formulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
It is noteworthy that computing \(EV_i^c\) does not require variables to exchange their relative positions in a pseudo tree. Specifically, each variable is associated with a counter which is initially set to the number of its (pseudo) parents. Then, the counter of a variable is propagated to its (pseudo) parents via UTIL messages. When its (pseudo) parent \(x_i\) receives the UTIL message containing it from \(x_c\in C(x_i)\), the variable’s counter decreases. Once its counter equals zero, that variable is added to \(EV_i^c\).
 
2
An example for AsymDPOP can be found in Appendix 1.1.
 
3
It is worth noting that TSPS can only make sure that the size of each local utility table is not greater than \(k_p\), and does not guarantee that the overall memory consumption is no greater than \(k_p\).
 
4
An example for AsymDPOP-TSPS can be found in Appendix 1.2.
 
5
We omit the details of the value propagation phase due to its similarity to the one in MB-DPOP, and also omit the details of ISM and CACHE in RMB-AsymDPOP due to their similarity to the ones in RMB-DPOP.
 
Literature
go back to reference Brito I, Meseguer P (2010) Improving DPOP with function filtering. AAMAS 1435:141–148 Brito I, Meseguer P (2010) Improving DPOP with function filtering. AAMAS 1435:141–148
go back to reference Brito I, Meisels A, Meseguer P, Zivan R (2009) Distributed constraint satisfaction with partially known constraints. Constraints 14(2):199–234MathSciNetCrossRefMATH Brito I, Meisels A, Meseguer P, Zivan R (2009) Distributed constraint satisfaction with partially known constraints. Constraints 14(2):199–234MathSciNetCrossRefMATH
go back to reference Burke DA, Brown KN, Dogru M, Lowe B (2007) Supply chain coordination through distributed constraint optimization. In: AAMAS workshop on distributed constraint reasoning Burke DA, Brown KN, Dogru M, Lowe B (2007) Supply chain coordination through distributed constraint optimization. In: AAMAS workshop on distributed constraint reasoning
go back to reference Chen Z, Deng Y, Wu T, He Z (2018) A class of iterative refined Max-sum algorithms via non-consecutive value propagation strategies. Auton Agent Multi-Agent Syst 32(6):822–860CrossRef Chen Z, Deng Y, Wu T, He Z (2018) A class of iterative refined Max-sum algorithms via non-consecutive value propagation strategies. Auton Agent Multi-Agent Syst 32(6):822–860CrossRef
go back to reference Chen D, Deng Y, Chen Z, He Z, Zhang W (2020a) A hybrid tree-based algorithm to solve asymmetric distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(2):1–42 Chen D, Deng Y, Chen Z, He Z, Zhang W (2020a) A hybrid tree-based algorithm to solve asymmetric distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(2):1–42
go back to reference Chen D, Deng Y, Chen Z, Zhang W, He Z (2020b) HS-CAI: a hybrid DCOP algorithm via combining search with context-based inference. In: AAAI, pp 7087–7094 Chen D, Deng Y, Chen Z, Zhang W, He Z (2020b) HS-CAI: a hybrid DCOP algorithm via combining search with context-based inference. In: AAAI, pp 7087–7094
go back to reference Chen Z, Liu L, He J, Yu Z (2020c) A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(2):41CrossRef Chen Z, Liu L, He J, Yu Z (2020c) A genetic algorithm based framework for local search algorithms for distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(2):41CrossRef
go back to reference Chen Z, Zhang W, Deng Y, Chen D, Li Q (2020d) RMB-DPOP: refining MB-DPOP by reducing redundant inferences. In: AAMAS, pp 249–257 Chen Z, Zhang W, Deng Y, Chen D, Li Q (2020d) RMB-DPOP: refining MB-DPOP by reducing redundant inferences. In: AAMAS, pp 249–257
go back to reference Dechter R et al (2003) Constraint processing. Morgan Kaufmann Dechter R et al (2003) Constraint processing. Morgan Kaufmann
go back to reference Deng Y, Chen Z, Chen D, Zhang W, Jiang X (2019) AsymDPOP: complete inference for asymmetric distributed constraint optimization problems. In: IJCAI, pp 223–230 Deng Y, Chen Z, Chen D, Zhang W, Jiang X (2019) AsymDPOP: complete inference for asymmetric distributed constraint optimization problems. In: IJCAI, pp 223–230
go back to reference Duan P, Zhang C, Mao G, Zhang B (2018) Applying distributed constraint optimization approach to the user association problem in heterogeneous networks. IEEE Trans Cybern 48(6):1696–1707CrossRef Duan P, Zhang C, Mao G, Zhang B (2018) Applying distributed constraint optimization approach to the user association problem in heterogeneous networks. IEEE Trans Cybern 48(6):1696–1707CrossRef
go back to reference Farinelli A, Rogers A, Petcu A, Jennings NR (2008) Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp 639–646 Farinelli A, Rogers A, Petcu A, Jennings NR (2008) Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp 639–646
go back to reference Fioretto F, Yeoh W, Pontelli E, Ma Y, Ranade SJ (2017) A distributed constraint optimization (DCOP) approach to the economic dispatch with demand response. In: AAMAS, pp 999–1007 Fioretto F, Yeoh W, Pontelli E, Ma Y, Ranade SJ (2017) A distributed constraint optimization (DCOP) approach to the economic dispatch with demand response. In: AAMAS, pp 999–1007
go back to reference Fioretto F, Pontelli E, Yeoh W (2018) Distributed constraint optimization problems and applications: a survey. J Artif Intell Res 61:623–698MathSciNetCrossRefMATH Fioretto F, Pontelli E, Yeoh W (2018) Distributed constraint optimization problems and applications: a survey. J Artif Intell Res 61:623–698MathSciNetCrossRefMATH
go back to reference Freuder EC, Quinn MJ (1985) Taking advantage of stable sets of variables in constraint satisfaction problems. In: IJCAI, pp 1076–1078 Freuder EC, Quinn MJ (1985) Taking advantage of stable sets of variables in constraint satisfaction problems. In: IJCAI, pp 1076–1078
go back to reference Gershman A, Zivan R, Grinshpoun T, Grubshtein A, Meisels A (2008) Measuring distributed constraint optimization algorithms. In: AAMAS workshop on distributed constraint reasoning Gershman A, Zivan R, Grinshpoun T, Grubshtein A, Meisels A (2008) Measuring distributed constraint optimization algorithms. In: AAMAS workshop on distributed constraint reasoning
go back to reference Grinshpoun T, Grubshtein A, Zivan R, Netzer A, Meisels A (2013) Asymmetric distributed constraint optimization problems. J Artif Intell Res 47:613–647MathSciNetCrossRefMATH Grinshpoun T, Grubshtein A, Zivan R, Netzer A, Meisels A (2013) Asymmetric distributed constraint optimization problems. J Artif Intell Res 47:613–647MathSciNetCrossRefMATH
go back to reference Grinshpoun T, Tassa T, Levit V, Zivan R (2019) Privacy preserving region optimal algorithms for symmetric and asymmetric DCOPs. Artif Intell 266:27–50MathSciNetCrossRefMATH Grinshpoun T, Tassa T, Levit V, Zivan R (2019) Privacy preserving region optimal algorithms for symmetric and asymmetric DCOPs. Artif Intell 266:27–50MathSciNetCrossRefMATH
go back to reference Gutierrez P, Meseguer P (2010) Saving messages in ADOPT-based algorithms. In: AAMAS workshop on distributed constraint reasoning, pp 53–64 Gutierrez P, Meseguer P (2010) Saving messages in ADOPT-based algorithms. In: AAMAS workshop on distributed constraint reasoning, pp 53–64
go back to reference Gutierrez P, Lee JH, Lei KM, Mak TW, Meseguer P (2013) Maintaining soft arc consistencies in BnB-ADOPT\(^+\) during search. In: CP, pp 365–380 Gutierrez P, Lee JH, Lei KM, Mak TW, Meseguer P (2013) Maintaining soft arc consistencies in BnB-ADOPT\(^+\) during search. In: CP, pp 365–380
go back to reference Hirayama K, Yokoo M (1997) Distributed partial constraint satisfaction problem. In: CP, pp 222–236 Hirayama K, Yokoo M (1997) Distributed partial constraint satisfaction problem. In: CP, pp 222–236
go back to reference Hirayama K, Miyake K, Shiota T, Okimoto T (2019) DSSA+: distributed collision avoidance algorithm in an environment where both course and speed changes are allowed. TransNav 13(1):117–123CrossRef Hirayama K, Miyake K, Shiota T, Okimoto T (2019) DSSA+: distributed collision avoidance algorithm in an environment where both course and speed changes are allowed. TransNav 13(1):117–123CrossRef
go back to reference Hoang KD, Fioretto F, Yeoh W, Pontelli E, Zivan R (2018) A large neighboring search schema for multi-agent optimization. In: CP, pp 688–706 Hoang KD, Fioretto F, Yeoh W, Pontelli E, Zivan R (2018) A large neighboring search schema for multi-agent optimization. In: CP, pp 688–706
go back to reference Kask K, Dechter R, Larrosa J, Dechter A (2005) Unifying tree decompositions for reasoning in graphical models. Artif Intell 166(1–2):165–193MathSciNetCrossRefMATH Kask K, Dechter R, Larrosa J, Dechter A (2005) Unifying tree decompositions for reasoning in graphical models. Artif Intell 166(1–2):165–193MathSciNetCrossRefMATH
go back to reference Léauté T, Faltings B (2013) Protecting privacy through distributed computation in multi-agent decision making. J Artif Intell Res 47:649–695MathSciNetCrossRefMATH Léauté T, Faltings B (2013) Protecting privacy through distributed computation in multi-agent decision making. J Artif Intell Res 47:649–695MathSciNetCrossRefMATH
go back to reference Maheswaran RT, Pearce JP, Tambe M (2004a) Distributed algorithms for DCOP: a graphical-game-based approach. In: ISCA PDCS, pp 432–439 Maheswaran RT, Pearce JP, Tambe M (2004a) Distributed algorithms for DCOP: a graphical-game-based approach. In: ISCA PDCS, pp 432–439
go back to reference Maheswaran RT, Tambe M, Bowring E, Pearce JP, Varakantham P (2004b) Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling. In: AAMAS, pp 310–317 Maheswaran RT, Tambe M, Bowring E, Pearce JP, Varakantham P (2004b) Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling. In: AAMAS, pp 310–317
go back to reference Modi PJ, Shen WM, Tambe M, Yokoo M (2005) ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif Intell 161(1–2):149–180MathSciNetCrossRefMATH Modi PJ, Shen WM, Tambe M, Yokoo M (2005) ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif Intell 161(1–2):149–180MathSciNetCrossRefMATH
go back to reference Monteiro TL, Pujolle G, Pellenz ME, Penna MC, Enembreck F, Souza RD (2012) A multi-agent approach to optimal channel assignment in WLANs. In: WCNC, pp 2637–2642 Monteiro TL, Pujolle G, Pellenz ME, Penna MC, Enembreck F, Souza RD (2012) A multi-agent approach to optimal channel assignment in WLANs. In: WCNC, pp 2637–2642
go back to reference Netzer A, Grubshtein A, Meisels A (2012) Concurrent forward bounding for distributed constraint optimization problems. Artif Intell 193:186–216MathSciNetCrossRefMATH Netzer A, Grubshtein A, Meisels A (2012) Concurrent forward bounding for distributed constraint optimization problems. Artif Intell 193:186–216MathSciNetCrossRefMATH
go back to reference Nguyen DT, Yeoh W, Lau HC, Zivan R (2019) Distributed Gibbs: a linear-space sampling-based DCOP algorithm. J Artif Intell Res 64:705–748MathSciNetCrossRefMATH Nguyen DT, Yeoh W, Lau HC, Zivan R (2019) Distributed Gibbs: a linear-space sampling-based DCOP algorithm. J Artif Intell Res 64:705–748MathSciNetCrossRefMATH
go back to reference Okamoto S, Zivan R, Nahon A (2016) Distributed breakout: beyond satisfaction. In: IJCAI, pp 447–453 Okamoto S, Zivan R, Nahon A (2016) Distributed breakout: beyond satisfaction. In: IJCAI, pp 447–453
go back to reference Ottens B, Dimitrakakis C, Faltings B (2017) DUCT: an upper confidence bound approach to distributed constraint optimization problems. ACM TIST 8(5):69 Ottens B, Dimitrakakis C, Faltings B (2017) DUCT: an upper confidence bound approach to distributed constraint optimization problems. ACM TIST 8(5):69
go back to reference Petcu A, Faltings B (2005a) Approximations in distributed optimization. In: CP, pp 802–806 Petcu A, Faltings B (2005a) Approximations in distributed optimization. In: CP, pp 802–806
go back to reference Petcu A, Faltings B (2005b) A scalable method for multiagent constraint optimization. In: IJCAI, pp 266–271 Petcu A, Faltings B (2005b) A scalable method for multiagent constraint optimization. In: IJCAI, pp 266–271
go back to reference Petcu A, Faltings B (2006) ODPOP: an algorithm for open/distributed constraint optimization. In: AAAI, pp 703–708 Petcu A, Faltings B (2006) ODPOP: an algorithm for open/distributed constraint optimization. In: AAAI, pp 703–708
go back to reference Petcu A, Faltings B (2007) MB-DPOP: a new memory-bounded algorithm for distributed optimization. In: IJCAI, pp 1452–1457 Petcu A, Faltings B (2007) MB-DPOP: a new memory-bounded algorithm for distributed optimization. In: IJCAI, pp 1452–1457
go back to reference Ramchurn SD, Vytelingum P, Rogers A, Jennings N (2011) Agent-based control for decentralised demand side management in the smart grid. In: AAMAS, pp 5–12 Ramchurn SD, Vytelingum P, Rogers A, Jennings N (2011) Agent-based control for decentralised demand side management in the smart grid. In: AAMAS, pp 5–12
go back to reference Rogers A, Farinelli A, Stranders R, Jennings NR (2011) Bounded approximate decentralised coordination via the max-sum algorithm. Artif Intell 175(2):730–759MathSciNetCrossRefMATH Rogers A, Farinelli A, Stranders R, Jennings NR (2011) Bounded approximate decentralised coordination via the max-sum algorithm. Artif Intell 175(2):730–759MathSciNetCrossRefMATH
go back to reference Sánchez-Fibla M, Larrosa J, Meseguer P (2005) Improving tree decomposition methods with function filtering. In: IJCAI, pp 1537–1538 Sánchez-Fibla M, Larrosa J, Meseguer P (2005) Improving tree decomposition methods with function filtering. In: IJCAI, pp 1537–1538
go back to reference Silaghi MC, Yokoo M (2006) Nogood based asynchronous distributed optimization (ADOPT-ng). In: AAMAS, pp 1389–1396 Silaghi MC, Yokoo M (2006) Nogood based asynchronous distributed optimization (ADOPT-ng). In: AAMAS, pp 1389–1396
go back to reference Silaghi MC, Yokoo M (2009) ADOPT-ing: unifying asynchronous distributed optimization with asynchronous backtracking. Auton Agent Multi-Agent Syst 19(2):89–123CrossRef Silaghi MC, Yokoo M (2009) ADOPT-ing: unifying asynchronous distributed optimization with asynchronous backtracking. Auton Agent Multi-Agent Syst 19(2):89–123CrossRef
go back to reference Sultanik EA, Modi PJ, Regli WC (2007) On modeling multiagent task scheduling as a distributed constraint optimization problem. In: IJCAI, pp 1531–1536 Sultanik EA, Modi PJ, Regli WC (2007) On modeling multiagent task scheduling as a distributed constraint optimization problem. In: IJCAI, pp 1531–1536
go back to reference Tassa T, Grinshpoun T, Zivan R (2017) Privacy preserving implementation of the Max-Sum algorithm and its variants. J Artif Intell Res 59:311–349MathSciNetCrossRefMATH Tassa T, Grinshpoun T, Zivan R (2017) Privacy preserving implementation of the Max-Sum algorithm and its variants. J Artif Intell Res 59:311–349MathSciNetCrossRefMATH
go back to reference Vinyals M, Rodriguez-Aguilar JA, Cerquides J (2011) Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. Auton Agent Multi-Agent Syst 22(3):439–464CrossRef Vinyals M, Rodriguez-Aguilar JA, Cerquides J (2011) Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law. Auton Agent Multi-Agent Syst 22(3):439–464CrossRef
go back to reference Yeoh W, Yokoo M (2012) Distributed problem solving. AI Mag 33(3):53 Yeoh W, Yokoo M (2012) Distributed problem solving. AI Mag 33(3):53
go back to reference Yeoh W, Felner A, Koenig S (2010) BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J Artif Intell Res 38:85–133CrossRefMATH Yeoh W, Felner A, Koenig S (2010) BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J Artif Intell Res 38:85–133CrossRefMATH
go back to reference Zhang W, Wang G, Xing Z, Wittenburg L (2005) Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif Intell 161(1–2):55–87MathSciNetCrossRefMATH Zhang W, Wang G, Xing Z, Wittenburg L (2005) Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif Intell 161(1–2):55–87MathSciNetCrossRefMATH
go back to reference Zivan R, Parash T, Cohen L, Peled H, Okamoto S (2017) Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Auton Agent Multi-Agent Syst 31(5):1165–1207CrossRef Zivan R, Parash T, Cohen L, Peled H, Okamoto S (2017) Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Auton Agent Multi-Agent Syst 31(5):1165–1207CrossRef
go back to reference Zivan R, Lev O, Galiki R (2020a) Beyond trees: analysis and convergence of belief propagation in graphs with multiple cycles. In: AAAI, pp 7333–7340 Zivan R, Lev O, Galiki R (2020a) Beyond trees: analysis and convergence of belief propagation in graphs with multiple cycles. In: AAAI, pp 7333–7340
go back to reference Zivan R, Parash T, Cohen-Lavi L, Naveh Y (2020b) Applying max-sum to asymmetric distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(1):1–29CrossRef Zivan R, Parash T, Cohen-Lavi L, Naveh Y (2020b) Applying max-sum to asymmetric distributed constraint optimization problems. Auton Agent Multi-Agent Syst 34(1):1–29CrossRef
Metadata
Title
Inference-based complete algorithms for asymmetric distributed constraint optimization problems
Authors
Dingding Chen
Ziyu Chen
Yanchen Deng
Zhongshi He
Lulu Wang
Publication date
03-10-2022
Publisher
Springer Netherlands
Published in
Artificial Intelligence Review / Issue 5/2023
Print ISSN: 0269-2821
Electronic ISSN: 1573-7462
DOI
https://doi.org/10.1007/s10462-022-10288-0

Other articles of this Issue 5/2023

Artificial Intelligence Review 5/2023 Go to the issue

Premium Partner