Skip to main content
Top

2025 | OriginalPaper | Chapter

Inferencing CNN Model for Navigational Object and Obstacles Classification on STM32 Boards

Authors : Mainkordor Mawblei, Rangababu Peesapati, Juwesh Binong

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This report explores the integration of high-end neural network models into embedded systems, its advantages over the high-end computers and Cloud-based inferencing to overcome the drawbacks such as cost, power consumption, latency, security concerns, and reliability. The STM32 microcontrollers are widely used in various embedded applications and are known for their high performance, low power consumption, and extensive connectivity options. A CNN architecture, ConvNet3, is proposed and fine-tuned for object classification and navigating obstacles in real-time scenarios, leveraging the limited resources of the STM32F401RE board. The performance of these models is evaluated, considering factors like prediction speed, accuracy, and model size. The findings highlight the trade-offs between accuracy and size reduction achieved through compression techniques. Overall, this research contributes to advancing CNN-based solutions for embedded systems and offers insights for model selection and data preparation, facilitating improved navigational capabilities and object recognition in resource-constrained environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Çalik RC, Demirci MF (2018) CIFAR-10 image classification with convolutional neural networks for embedded systems. In: 2018 IEEE/ACS 15th international conference on computer systems and applications (AICCSA). IEEE, pp 1–2 Çalik RC, Demirci MF (2018) CIFAR-10 image classification with convolutional neural networks for embedded systems. In: 2018 IEEE/ACS 15th international conference on computer systems and applications (AICCSA). IEEE, pp 1–2
2.
go back to reference Canepa A, Ragusa E, Zunino R, Gastaldo P (2022) Detection-based video surveillance using deep neural networks on STM32 microcontroller. In: 2022 29th IEEE international conference on electronics, circuits and systems (ICECS). IEEE, pp 1–4 Canepa A, Ragusa E, Zunino R, Gastaldo P (2022) Detection-based video surveillance using deep neural networks on STM32 microcontroller. In: 2022 29th IEEE international conference on electronics, circuits and systems (ICECS). IEEE, pp 1–4
3.
go back to reference Hurtik P, Molek V, Hula J (2019) Data preprocessing technique for neural networks based on image represented by a fuzzy function. IEEE Trans Fuzzy Syst 28(7):1195–1204CrossRef Hurtik P, Molek V, Hula J (2019) Data preprocessing technique for neural networks based on image represented by a fuzzy function. IEEE Trans Fuzzy Syst 28(7):1195–1204CrossRef
4.
go back to reference Katal A, Dahiya S, Choudhury T (2022) Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Comput 1–31 Katal A, Dahiya S, Choudhury T (2022) Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Comput 1–31
5.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
6.
go back to reference Liang T, Glossner J, Wang L, Shi S, Zhang X (2021) Pruning and quantization for deep neural network acceleration: a survey. Neurocomputing 461:370–403CrossRef Liang T, Glossner J, Wang L, Shi S, Zhang X (2021) Pruning and quantization for deep neural network acceleration: a survey. Neurocomputing 461:370–403CrossRef
7.
go back to reference Loquercio A, Maqueda AI, Del-Blanco CR, Scaramuzza D (2018) DroNet: learning to fly by driving. IEEE Robot Automat Lett 3(2):1088–1095CrossRef Loquercio A, Maqueda AI, Del-Blanco CR, Scaramuzza D (2018) DroNet: learning to fly by driving. IEEE Robot Automat Lett 3(2):1088–1095CrossRef
8.
go back to reference Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870CrossRef Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870CrossRef
10.
go back to reference Pal KK, Sudeep K (2016) Preprocessing for image classification by convolutional neural networks. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1778–1781 Pal KK, Sudeep K (2016) Preprocessing for image classification by convolutional neural networks. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1778–1781
11.
go back to reference Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017) Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:​1712.​04621 (2017)
12.
go back to reference Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48CrossRef Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48CrossRef
13.
go back to reference Silva CF, Siebra CA (2017) An investigation on the use of convolutional neural network for image classification in embedded systems. In: 2017 IEEE Latin American conference on computational intelligence (LA-CCI). IEEE, pp 1–6 Silva CF, Siebra CA (2017) An investigation on the use of convolutional neural network for image classification in embedded systems. In: 2017 IEEE Latin American conference on computational intelligence (LA-CCI). IEEE, pp 1–6
17.
go back to reference Yang S, Xiao W, Zhang M, Guo S, Zhao J, Shen F (2022) Image data augmentation for deep learning: a survey. arXiv preprint arXiv:2204.08610 Yang S, Xiao W, Zhang M, Guo S, Zhao J, Shen F (2022) Image data augmentation for deep learning: a survey. arXiv preprint arXiv:​2204.​08610
Metadata
Title
Inferencing CNN Model for Navigational Object and Obstacles Classification on STM32 Boards
Authors
Mainkordor Mawblei
Rangababu Peesapati
Juwesh Binong
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_28