Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Infinite Horizon Optimal Control

Authors : Lars Grüne, Jürgen Pannek

Published in: Nonlinear Model Predictive Control

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we give an introduction to nonlinear infinite horizon optimal control. The dynamic programming principle as well as several consequences of this principle are proved. One of the main results of this chapter is that the infinite horizon optimal feedback law asymptotically stabilizes the system and that the infinite horizon optimal value function is a Lyapunov function for the closed-loop system. Motivated by this property we formulate a relaxed version of the dynamic programming principle, which allows to prove stability and suboptimality results for nonoptimal feedback laws and without using the optimal value function. A practical version of this principle is provided, too. These results will be central in the following chapters for the stability and performance analysis of NMPC algorithms. For the special case of sampled data systems we finally show that for suitable integral costs asymptotic stability of the continuous time sampled data closed-loop system follows from the asymptotic stability of the associated discrete time system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)MathSciNetCrossRefMATH Alamir, M., Bornard, G.: Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)MathSciNetCrossRefMATH
2.
go back to reference Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 3rd edn. Athena Scientific, Belmont (2005)MATH Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 3rd edn. Athena Scientific, Belmont (2005)MATH
3.
go back to reference Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 2nd edn. Athena Scientific, Belmont (2001)MATH Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 2nd edn. Athena Scientific, Belmont (2001)MATH
4.
go back to reference Bitmead, R.R., Gevers, M., Wertz, V.: Adaptive optimal control. The thinking man’s GPC. International Series in Systems and Control Engineering. Prentice-Hall, New York (1990) Bitmead, R.R., Gevers, M., Wertz, V.: Adaptive optimal control. The thinking man’s GPC. International Series in Systems and Control Engineering. Prentice-Hall, New York (1990)
5.
go back to reference Camilli, F., Grüne, L., Wirth, F.: A regularization of Zubov’s equation for robust domains of attraction. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds.) Nonlinear Control in the Year 2000, vol. 1. Lecture Notes in Control and Information Science, vol. 258, pp. 277–289. Springer, London (2001) Camilli, F., Grüne, L., Wirth, F.: A regularization of Zubov’s equation for robust domains of attraction. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds.) Nonlinear Control in the Year 2000, vol. 1. Lecture Notes in Control and Information Science, vol. 258, pp. 277–289. Springer, London (2001)
6.
go back to reference Dorato, P., Levis, A.H.: Optimal linear regulators: the discrete-time case. IEEE Trans. Automat. Control 16, 613–620 (1971)MathSciNetCrossRef Dorato, P., Levis, A.H.: Optimal linear regulators: the discrete-time case. IEEE Trans. Automat. Control 16, 613–620 (1971)MathSciNetCrossRef
7.
go back to reference Falcone, M.: Numerical solution of dynamic programming equations. Appendix A in Bardi, M. and Capuzzo Dolcetta, I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston (1997) Falcone, M.: Numerical solution of dynamic programming equations. Appendix A in Bardi, M. and Capuzzo Dolcetta, I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhäuser, Boston (1997)
8.
go back to reference Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558 (2005)MathSciNetCrossRef Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50(5), 546–558 (2005)MathSciNetCrossRef
9.
10.
12.
go back to reference Grüne, L., Junge, O.: Set oriented construction of globally optimal controllers. at -. Automatisierungstechnik 57, 287–295 (2009)CrossRef Grüne, L., Junge, O.: Set oriented construction of globally optimal controllers. at -. Automatisierungstechnik 57, 287–295 (2009)CrossRef
13.
go back to reference Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control 53, 2100–2111 (2008)MathSciNetCrossRef Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control 53, 2100–2111 (2008)MathSciNetCrossRef
14.
15.
go back to reference Keerthi, S.S., Gilbert, E.G.: An existence theorem for discrete-time infinite-horizon optimal control problems. IEEE Trans. Automat. Control 30(9), 907–909 (1985)MathSciNetCrossRefMATH Keerthi, S.S., Gilbert, E.G.: An existence theorem for discrete-time infinite-horizon optimal control problems. IEEE Trans. Automat. Control 30(9), 907–909 (1985)MathSciNetCrossRefMATH
16.
go back to reference Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)MathSciNetCrossRefMATH Keerthi, S.S., Gilbert, E.G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57(2), 265–293 (1988)MathSciNetCrossRefMATH
17.
18.
19.
go back to reference Meadows, E.S., Rawlings, J.B.: Receding horizon control with an infinite cost. In: Proceedings of the American Control Conference - ACC 1993, pp. 2926–2930. San Francisco, California, USA (1993) Meadows, E.S., Rawlings, J.B.: Receding horizon control with an infinite cost. In: Proceedings of the American Control Conference - ACC 1993, pp. 2926–2930. San Francisco, California, USA (1993)
20.
go back to reference Rantzer, A.: Relaxed dynamic programming in switching systems. IEE Proc. - Control Theory Appl. 153(5), 567–574 (2006)MathSciNetCrossRef Rantzer, A.: Relaxed dynamic programming in switching systems. IEE Proc. - Control Theory Appl. 153(5), 567–574 (2006)MathSciNetCrossRef
21.
go back to reference Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Control 44(3), 648–654 (1999)MathSciNetCrossRefMATH Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Control 44(3), 648–654 (1999)MathSciNetCrossRefMATH
23.
Metadata
Title
Infinite Horizon Optimal Control
Authors
Lars Grüne
Jürgen Pannek
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46024-6_4