Skip to main content
Top
Published in:

01-12-2023 | Original Article

Influence blocking maximization under refutation

Authors: Qi Luo, Dongxiao Yu, Dongbiao Wang, Yafei Zhang, Yanwei Zheng, Zhipeng Cai

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In social networks, a phenomenon termed the refutation mechanism arises when certain users spontaneously counter negative information based on their knowledge and experience. To the best of our knowledge, this paper focuses on the influence blocking maximization under the refutation mechanism for the first time. Specifically, incorporating the refutation mechanism with the Competitive Independent Cascade model, we introduce the Refutation Competitive Independent Cascade model, while also considering real-time delay. Under the proposed model, we study the Joint Influence Blocking Maximization (JIBM) problem. The objective of JIBM is to maximize the expected number of nonnegatives by finding a set of positive seeds in a network. We show that the problem is NP-hard. We present a scalable approximation algorithm, named RR-JIBM, by making a non-trivial adaptation of the generation process of reverse reachable sets. We prove that the given algorithms achieve a \((1-1/e-\varepsilon )\)-approximation for any \(\varepsilon > 0\) for JIBM problem. An improved algorithm named RR-JIBM+ is also proposed to improve the efficiency of RR-JIBM in reality. Experiments on real-world social networks show that our algorithms outperform other intuitive baselines in reducing the number of nodes influenced by negative seed nodes. Meanwhile, the RR-JIBM+ algorithm has a higher efficiency advantage than RR-JIBM on different datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
http://snap.stanford.edu/data/index.html
 
2
http://konect.cc/networks
 
Literature
go back to reference Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO (2013) The diffusion of microfinance. Science 341(6144):1236498CrossRef Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO (2013) The diffusion of microfinance. Science 341(6144):1236498CrossRef
go back to reference Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms
go back to reference Borodin A, Filmus Y, Oren J (2010) Threshold models for competitive influence in social networks. In: Internet and network economics - 6th international workshop, WINE. Lecture Notes in Computer Science, 6484: 539–550 Borodin A, Filmus Y, Oren J (2010) Threshold models for competitive influence in social networks. In: Internet and network economics - 6th international workshop, WINE. Lecture Notes in Computer Science, 6484: 539–550
go back to reference Bovet A, Makse HA (2019) Influence of fake news in Twitter during the 2016 US presidential election. Nat Commun 10(1):7CrossRef Bovet A, Makse HA (2019) Influence of fake news in Twitter during the 2016 US presidential election. Nat Commun 10(1):7CrossRef
go back to reference Braunstein A, Dall’Asta L, Semerjian G, Zdeborová L (2016) Network dismantling. Proc Natl Acad Sci 113(44):12368–12373CrossRef Braunstein A, Dall’Asta L, Semerjian G, Zdeborová L (2016) Network dismantling. Proc Natl Acad Sci 113(44):12368–12373CrossRef
go back to reference Budak C, Agrawal D, El Abbadi A (2011) Limiting the spread of misinformation in social networks. In: Proceedings of the 20th international conference on world wide web Budak C, Agrawal D, El Abbadi A (2011) Limiting the spread of misinformation in social networks. In: Proceedings of the 20th international conference on world wide web
go back to reference Chen W (2018) An issue in the martingale analysis of the influence maximization algorithm imm. In: Computational data and social networks Chen W (2018) An issue in the martingale analysis of the influence maximization algorithm imm. In: Computational data and social networks
go back to reference Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 199–208 Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 199–208
go back to reference Chen D, Lü L, Shang M-S, Zhang Y-C, Zhou T (2012) Identifying influential nodes in complex networks. Physica A Statist Mech Appl 391(4):1777–1787CrossRef Chen D, Lü L, Shang M-S, Zhang Y-C, Zhou T (2012) Identifying influential nodes in complex networks. Physica A Statist Mech Appl 391(4):1777–1787CrossRef
go back to reference Chen W, Lakshmanan LVS, Castillo C (2013) Inform Influ Propagation Soc Netw. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, California, United States Chen W, Lakshmanan LVS, Castillo C (2013) Inform Influ Propagation Soc Netw. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, California, United States
go back to reference Chen B-L, Jiang W-X, Chen Y-X, Chen L, Wang R-J, Han S, Lin J-H, Zhang Y-C (2022) Influence blocking maximization on networks: Models, methods and applications. Phys Rep 976:1–54MathSciNetCrossRef Chen B-L, Jiang W-X, Chen Y-X, Chen L, Wang R-J, Han S, Lin J-H, Zhang Y-C (2022) Influence blocking maximization on networks: Models, methods and applications. Phys Rep 976:1–54MathSciNetCrossRef
go back to reference Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559CrossRef Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559CrossRef
go back to reference Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, pp 57–66 Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, pp 57–66
go back to reference Fan C, Zeng L, Sun Y, Liu Y-Y (2020) Finding key players in complex networks through deep reinforcement learning. Nat Mach Intell 2(6):317–324CrossRef Fan C, Zeng L, Sun Y, Liu Y-Y (2020) Finding key players in complex networks through deep reinforcement learning. Nat Mach Intell 2(6):317–324CrossRef
go back to reference He X, Song G, Chen W, Jiang Q (2012) Influence blocking maximization in social networks under the competitive linear threshold model. In: SDM He X, Song G, Chen W, Jiang Q (2012) Influence blocking maximization in social networks under the competitive linear threshold model. In: SDM
go back to reference Jones NM, Thompson RR, Schetter CD, Silver RC (2017) Distress and rumor exposure on social media during a campus lockdown. Proc Natl Acad Sci 114(44):11663–11668CrossRef Jones NM, Thompson RR, Schetter CD, Silver RC (2017) Distress and rumor exposure on social media during a campus lockdown. Proc Natl Acad Sci 114(44):11663–11668CrossRef
go back to reference Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining
go back to reference Kimura, Masahiro, Saito, Kazumi, Motoda, Hiroshi (2008) Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd national conference on artificial intelligence - vol 2 Kimura, Masahiro, Saito, Kazumi, Motoda, Hiroshi (2008) Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd national conference on artificial intelligence - vol 2
go back to reference Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef
go back to reference Lu W, Chen W, Lakshmanan LVS (2015) From competition to complementarity: comparative influence diffusion and maximization Lu W, Chen W, Lakshmanan LVS (2015) From competition to complementarity: comparative influence diffusion and maximization
go back to reference Masahiro Kimura, Kazumi Saito, Hiroshi Motoda (2009) Blocking links to minimize contamination spread in a social network. ACM Trans Knowl Discov Data 3(2):1–23CrossRef Masahiro Kimura, Kazumi Saito, Hiroshi Motoda (2009) Blocking links to minimize contamination spread in a social network. ACM Trans Knowl Discov Data 3(2):1–23CrossRef
go back to reference Medya S, da Silva AL, Singh AK (2020) Approximate algorithms for data-driven influence limitation. IEEE Trans Know Data Eng 34(6):2641–2652 Medya S, da Silva AL, Singh AK (2020) Approximate algorithms for data-driven influence limitation. IEEE Trans Know Data Eng 34(6):2641–2652
go back to reference Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68CrossRef Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68CrossRef
go back to reference Mugisha S, Zhou H-J (2016) Identifying optimal targets of network attack by belief propagation. Phys Rev E 94:012305CrossRef Mugisha S, Zhou H-J (2016) Identifying optimal targets of network attack by belief propagation. Phys Rev E 94:012305CrossRef
go back to reference Paluck EL, Shepherd H, Aronow PM (2016) Changing climates of conflict: a social network experiment in 56 schools. Proc Natl Acad Sci 113(3):566–571CrossRef Paluck EL, Shepherd H, Aronow PM (2016) Changing climates of conflict: a social network experiment in 56 schools. Proc Natl Acad Sci 113(3):566–571CrossRef
go back to reference Ren X-L, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Generalized network dismantling. Proc Nat Acad Sci 116(14):6554–6559MathSciNetCrossRef Ren X-L, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Generalized network dismantling. Proc Nat Acad Sci 116(14):6554–6559MathSciNetCrossRef
go back to reference Shao C, Ciampaglia GL, Varol O, Yang K-C, Flammini A, Menczer F (2018) The spread of low-credibility content by social bots. Nat Commun 9:4787CrossRef Shao C, Ciampaglia GL, Varol O, Yang K-C, Flammini A, Menczer F (2018) The spread of low-credibility content by social bots. Nat Commun 9:4787CrossRef
go back to reference Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data
go back to reference Tong G, Du DZ (2019) Beyond uniform reverse sampling: a hybrid sampling technique for misinformation prevention Tong G, Du DZ (2019) Beyond uniform reverse sampling: a hybrid sampling technique for misinformation prevention
go back to reference Tong G, Wu W, Du D (2018) Distributed rumor blocking with multiple positive cascades. IEEE Trans Comput Soc Syst 5(2):468–480CrossRef Tong G, Wu W, Du D (2018) Distributed rumor blocking with multiple positive cascades. IEEE Trans Comput Soc Syst 5(2):468–480CrossRef
go back to reference Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151CrossRef Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151CrossRef
go back to reference Wang B, Chen G, Fu L, Song L, Wang X (2017) Drimux: dynamic rumor influence minimization with user experience in social networks. IEEE transactions on knowledge and data engineering Wang B, Chen G, Fu L, Song L, Wang X (2017) Drimux: dynamic rumor influence minimization with user experience in social networks. IEEE transactions on knowledge and data engineering
go back to reference Wu P, Pan L (2017) Scalable influence blocking maximization in social networks under competitive independent cascade models. Comput Netw 123:38–50CrossRef Wu P, Pan L (2017) Scalable influence blocking maximization in social networks under competitive independent cascade models. Comput Netw 123:38–50CrossRef
go back to reference Yan R, Li D, Wu W, Du DZ (2018) Minimizing influence of rumors by blockers on social networks. In: CSoNet Yan R, Li D, Wu W, Du DZ (2018) Minimizing influence of rumors by blockers on social networks. In: CSoNet
go back to reference Yan R, Li D, Wu W, Du DZ, Wang Y (2020) Minimizing influence of rumors by blockers on social networks: algorithms and analysis. IEEE transactions on network science and engineering Yan R, Li D, Wu W, Du DZ, Wang Y (2020) Minimizing influence of rumors by blockers on social networks: algorithms and analysis. IEEE transactions on network science and engineering
go back to reference Yao Q, Guo L (2015) Minimizing the social influence from a topic modeling perspective. In: ICDS Yao Q, Guo L (2015) Minimizing the social influence from a topic modeling perspective. In: ICDS
go back to reference Yao Q, Zhou C, Xiang L, Cao Y, Guo L (2014) Minimizing the negative influence by blocking links in social networks. In: ISCTCS Yao Q, Zhou C, Xiang L, Cao Y, Guo L (2014) Minimizing the negative influence by blocking links in social networks. In: ISCTCS
go back to reference Yao Q, Shi R, Zhou C, Wang P, Guo L (2015) Topic-aware social influence minimization. Proceedings of the 24th international conference on world wide web Yao Q, Shi R, Zhou C, Wang P, Guo L (2015) Topic-aware social influence minimization. Proceedings of the 24th international conference on world wide web
go back to reference Zhang H, Zhang H, Li X, Thai MT (2015) Limiting the spread of misinformation while effectively raising awareness in social networks. In: Computational social networks - 4th international conference, CSoNet, 9197: 35–47 Zhang H, Zhang H, Li X, Thai MT (2015) Limiting the spread of misinformation while effectively raising awareness in social networks. In: Computational social networks - 4th international conference, CSoNet, 9197: 35–47
go back to reference Zhu J, Ni P, Wang G (2020) Activity minimization of misinformation influence in online social networks. IEEE Transact Comput Soc Syst 7(4):897–906CrossRef Zhu J, Ni P, Wang G (2020) Activity minimization of misinformation influence in online social networks. IEEE Transact Comput Soc Syst 7(4):897–906CrossRef
Metadata
Title
Influence blocking maximization under refutation
Authors
Qi Luo
Dongxiao Yu
Dongbiao Wang
Yafei Zhang
Yanwei Zheng
Zhipeng Cai
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01123-7

Premium Partner