Skip to main content
Top
Published in:

01-12-2016 | Original Article

Influence learning for cascade diffusion models: focus on partial orders of infections

Authors: Sylvain Lamprier, Simon Bourigault, Patrick Gallinari

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Probabilistic cascade models consider information diffusion as an iterative process in which information transits between users of a network. The problem of diffusion modeling then comes down to learning transmission probability distributions, depending on hidden influence relationships between users, in order to discover the main diffusion channels of the network. Various learning models have been proposed in the literature, but we argue that the diffusion mechanisms defined in most of these models are not well-adapted to deal with noisy diffusion events observed from real social networks, where transmissions of content occur between humans. Classical models usually have some difficulties for extracting the main regularities in such real-world settings. In this paper, we propose a relaxed learning process of the well-known independent cascade model that, rather than attempting to explain exact timestamps of users’ infections, focus on infection probabilities knowing sets of previously infected users. Furthermore, we propose a regularized learning scheme that allows the model to extract more generalizable transmission probabilities from training social data. Experiments show the effectiveness of our proposals, by considering the learned models for real-world prediction tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Throughout this paper, we indifferently talk of infection or contamination to denote the fact that the propagated content has reached a given user of the network.
 
2
The extraction of diffusion sequences from the data, which may be not straightforward with non-binary participations to the diffusion or in the case of a polymorphic diffused content, is not of our concern here. We assume diffusion episodes already extracted by a preliminary process.
 
3
The ending time of diffusion T is arbitrarily set to the infection time-stamp \(t^D(u)\) of the latest contaminated user u in the longest diffusion episode D.
 
4
Note that the second term of formula 3 remains unchanged since this part does not depend on any latent factor and can be considered as it in the optimization process.
 
5
In our setting, a counter-example of diffusion from user u to user v is an episode contained in \(\mathscr {D}_{u,v}^-\) (see formula 9): an episode where u is infected but v is not.
 
6
Relation uv is considered only if there exists at least one diffusion episode in the training set where u is infected before v. With all approaches studied hereafter, relationships with no positive example would obtain a null weight anyway. They can therefore be ignored during the learning step.
 
Literature
go back to reference Bourigault S, Lagnier C, Lamprier S, Denoyer L, Gallinari P (2014) Learning social network embeddings for predicting information diffusion. In: Carterette B, Diaz F, Castillo C, Metzler D (eds) WSDM '14 Proceedings of the 7th ACM international conference on Web search and data mining, ACM, New York, pp 393–402 Bourigault S, Lagnier C, Lamprier S, Denoyer L, Gallinari P (2014) Learning social network embeddings for predicting information diffusion. In: Carterette B, Diaz F, Castillo C, Metzler D (eds) WSDM '14 Proceedings of the 7th ACM international conference on Web search and data mining, ACM, New York, pp 393–402
go back to reference Burton K, Java A, Soboro I (2009) The icwsm 2009 spinn3r dataset. In: Proceedings of the 3rd annual conference on weblogs and social media (ICWSM 2009), San Jose, 17–20 May 2009 Burton K, Java A, Soboro I (2009) The icwsm 2009 spinn3r dataset. In: Proceedings of the 3rd annual conference on weblogs and social media (ICWSM 2009), San Jose, 17–20 May 2009
go back to reference Du N, Song L, Gomez-Rodriguez M, Zha H (2013) Scalable influence estimation in continuous-time diffusion networks. In: Burges C, Bottou L, Welling M, Ghahramani Z, Weinberger K (eds) Advances in neural information processing systems 26, Curran Associates Inc, pp 3147–3155 Du N, Song L, Gomez-Rodriguez M, Zha H (2013) Scalable influence estimation in continuous-time diffusion networks. In: Burges C, Bottou L, Welling M, Ghahramani Z, Weinberger K (eds) Advances in neural information processing systems 26, Curran Associates Inc, pp 3147–3155
go back to reference Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market lett 12(3):211–223CrossRef Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market lett 12(3):211–223CrossRef
go back to reference Gomez-Rodriguez M, Balduzzi D, Scholkopf B (2011) Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th international conference on machine learning (ICML-11), ICML'11, ACM, pp 561–568 Gomez-Rodriguez M, Balduzzi D, Scholkopf B (2011) Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th international conference on machine learning (ICML-11), ICML'11, ACM, pp 561–568
go back to reference Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD'10, ACM, New York Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD'10, ACM, New York
go back to reference Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1143CrossRef Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1143CrossRef
go back to reference Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of the 13th international conference on World Wide Web, WWW '04, ACM, New York, pp 491–501 Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of the 13th international conference on World Wide Web, WWW '04, ACM, New York, pp 491–501
go back to reference Guille A, Hacid H (2012) A predictive model for the temporal dynamics of information diffusion in online social networks. In: Proceedings of the 21st international conference companion on World Wide Web, WWW '12, Companion, ACM Guille A, Hacid H (2012) A predictive model for the temporal dynamics of information diffusion in online social networks. In: Proceedings of the 21st international conference companion on World Wide Web, WWW '12, Companion, ACM
go back to reference Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '03, ACM, pp 137–146 Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '03, ACM, pp 137–146
go back to reference Klimt B, Yang Y (2004) Introducing the Enron corpus. In: 1st conference on email and anti-spam (CEAS), 30–31 July 2004, Mountain View, California Klimt B, Yang Y (2004) Introducing the Enron corpus. In: 1st conference on email and anti-spam (CEAS), 30–31 July 2004, Mountain View, California
go back to reference Lagnier C, Denoyer L, Gaussier E, Gallinari P (2013) Predicting information diffusion in social networks using content and user's profiles. In: Serdyukov P, Braslavski P, Kuznetsov SO, Kamps J, Rüger S, Agichtein E, Segalovich I, Yilmaz E (eds) Advances in information retrieval, 35th European conference on IR research, ECIR 2013, Moscow, 24–27 Mar 2013, pp 74–85 Lagnier C, Denoyer L, Gaussier E, Gallinari P (2013) Predicting information diffusion in social networks using content and user's profiles. In: Serdyukov P, Braslavski P, Kuznetsov SO, Kamps J, Rüger S, Agichtein E, Segalovich I, Yilmaz E (eds) Advances in information retrieval, 35th European conference on IR research, ECIR 2013, Moscow, 24–27 Mar 2013, pp 74–85
go back to reference Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, ACM, New York, pp 497–506 Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, ACM, New York, pp 497–506
go back to reference Ma H, Yang H, Lyu MR, King I (2008) Mining social networks using heat diffusion processes for marketing candidates selection. In: Proceedings of the 17th ACM conference on information and knowledge management, CIKM '08, ACM, New York, pp 233–242 Ma H, Yang H, Lyu MR, King I (2008) Mining social networks using heat diffusion processes for marketing candidates selection. In: Proceedings of the 17th ACM conference on information and knowledge management, CIKM '08, ACM, New York, pp 233–242
go back to reference Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD '11, ACM, New York, pp 529–537 Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD '11, ACM, New York, pp 529–537
go back to reference Myers SA, Leskovec J (2010) On the convexity of latent social network inference. In: NIPS ’10 Proceedings of the 23rd international conference on neural information processing systems, Curran Associates Inc, USA, pp 1741–1749 Myers SA, Leskovec J (2010) On the convexity of latent social network inference. In: NIPS ’10 Proceedings of the 23rd international conference on neural information processing systems, Curran Associates Inc, USA, pp 1741–1749
go back to reference Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th international conference on World wide web, ACM, pp 695–704 Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th international conference on World wide web, ACM, pp 695–704
go back to reference Saito K, Kimura M, Ohara K, Motoda H (2009) Learning continuous-time information diffusion model for social behavioral data analysis. In: Proceedings of the 1st Asian conference on machine learning: advances in machine learning, ACML '09, Springer, Berlin, pp 322–337 Saito K, Kimura M, Ohara K, Motoda H (2009) Learning continuous-time information diffusion model for social behavioral data analysis. In: Proceedings of the 1st Asian conference on machine learning: advances in machine learning, ACML '09, Springer, Berlin, pp 322–337
go back to reference Saito K, Kimura M, Ohara K, Motoda H (2010) Generative models of information diffusion with asynchronous timedelay. JMLR: Workshop and Conference Proceedings 13, 2nd Asian conference on machine learning (ACML2010), Tokyo, 8–10 Nov 2010, pp 193–208 Saito K, Kimura M, Ohara K, Motoda H (2010) Generative models of information diffusion with asynchronous timedelay. JMLR: Workshop and Conference Proceedings 13, 2nd Asian conference on machine learning (ACML2010), Tokyo, 8–10 Nov 2010, pp 193–208
go back to reference Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for independent cascade model. In: Proceedings of the 12th international conference on knowledge-based intelligent information and engineering systems, Part III, KES '08, Springer, pp 67–75 Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for independent cascade model. In: Proceedings of the 12th international conference on knowledge-based intelligent information and engineering systems, Part III, KES '08, Springer, pp 67–75
go back to reference Saito K, Ohara K, Yamagishi Y, Kimura M, Motoda H (2011) Learning diffusion probability based on node attributes in social networks. In: Kryszkiewicz M, Rybinski H, Skowron A, Ras ZW (eds) ISMIS, lecture notes in Computer Science, vol. 6804, Springer, pp 153–162 Saito K, Ohara K, Yamagishi Y, Kimura M, Motoda H (2011) Learning diffusion probability based on node attributes in social networks. In: Kryszkiewicz M, Rybinski H, Skowron A, Ras ZW (eds) ISMIS, lecture notes in Computer Science, vol. 6804, Springer, pp 153–162
go back to reference Szabo G, Huberman BA (2010) Predicting the popularity of online content. Commun ACM 53(8):80–88CrossRef Szabo G, Huberman BA (2010) Predicting the popularity of online content. Commun ACM 53(8):80–88CrossRef
go back to reference Ver Steeg G, Galstyan A (2013) Information-theoretic measures of influence based on content dynamics. In: Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, ACM, New York, pp 3–12 Ver Steeg G, Galstyan A (2013) Information-theoretic measures of influence based on content dynamics. In: Proceedings of the sixth ACM international conference on Web search and data mining, WSDM '13, ACM, New York, pp 3–12
go back to reference Wang F, Wang H, Xu K (2012) Diffusive logistic model towards predicting information diffusion in online social networks. In: Proceedings of the 2012 32nd international conference on distributed computing systems workshops, ICDCSW '12, IEEE Computer Society, pp 133–139 Wang F, Wang H, Xu K (2012) Diffusive logistic model towards predicting information diffusion in online social networks. In: Proceedings of the 2012 32nd international conference on distributed computing systems workshops, ICDCSW '12, IEEE Computer Society, pp 133–139
go back to reference Wang L, Ermon S, Hopcroft JE (2012) Feature-enhanced probabilistic models for diffusion network inference. In: Proceedings of the 2012 European conference on machine learning and knowledge discovery in databases, vol Part II. ECML PKDD'12, Springer, pp 499–514 Wang L, Ermon S, Hopcroft JE (2012) Feature-enhanced probabilistic models for diffusion network inference. In: Proceedings of the 2012 European conference on machine learning and knowledge discovery in databases, vol Part II. ECML PKDD'12, Springer, pp 499–514
go back to reference Yang J, Leskovec J (2010) Modeling information diffusion in implicit networks. In: Proceedings of the 2010 IEEE international conference on data mining, ICDM '10, IEEE Computer Society, Washington, pp 599–608 Yang J, Leskovec J (2010) Modeling information diffusion in implicit networks. In: Proceedings of the 2010 IEEE international conference on data mining, ICDM '10, IEEE Computer Society, Washington, pp 599–608
Metadata
Title
Influence learning for cascade diffusion models: focus on partial orders of infections
Authors
Sylvain Lamprier
Simon Bourigault
Patrick Gallinari
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0406-1

Premium Partner