Skip to main content
Top
Published in: Physics of Metals and Metallography 10/2021

01-10-2021 | STRENGTH AND PLASTICITY

Influence of All-Round Forging under Short-Term Creep Conditions on the Structure and Mechanical Properties of the Al7075/10SiCp Composite with an Aluminum Matrix

Authors: D. I. Kryuchkov, A. V. Nesterenko, S. V. Smirnov, N. B. Pugacheva, D. I. Vichuzhanin, T. M. Bykova

Published in: Physics of Metals and Metallography | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the preliminary deformation and heat treatment by all-round forging under conditions of short-term high-temperature creep on the microstructure and mechanical properties of a composite material based on a high-strength aluminum alloy of the Al–Cu–Mg–Zn system (Al7075) strengthened with SiC particles (10 wt %) is investigated. The most effective regime of short-term high-temperature creep is established experimentally. It is found that an avalanche-like increase in the rate of relative deformation occurs upon heating to temperatures above 500°C. This increase is due to the local appearance of a liquid phase at the boundaries between the needle-like particles of the S-phase and an Al based solid solution in the composite matrix in accordance with the eutectic transformation α-Al + S(Al2CuMg) → L. After deformation and heat treatment, reinforcing SiC particles are redistributed and the structure of the composite is transformed from a cellular to a uniform configuration. At the same time, the micromechanical properties are leveled over the volume of the composite. The maximum value of the resistance to deformation in the axial compression test increases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. N. Kablov, B. V. Shchetanov, D. V. Grashchenkov, A. A. Shavnev, and A. N. Nyafkin, “Metal-matrix composite materials based on Al–SiC,” AMIT, No. S, 373–380 (2012). E. N. Kablov, B. V. Shchetanov, D. V. Grashchenkov, A. A. Shavnev, and A. N. Nyafkin, “Metal-matrix composite materials based on Al–SiC,” AMIT, No. S, 373–380 (2012).
2.
go back to reference A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 1 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 3–10 (2015). A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 1 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 3–10 (2015).
3.
go back to reference A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 2 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 11–17 (2015). A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 2 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 11–17 (2015).
4.
go back to reference E. A. Stoyakina, E. I. Kurbatkina, V. N. Simonov, D. V. Kosolapov, and A. V. Gololobov, “Mechanical properties of aluminum-matrix composites reinforced with SiC particles, depending on the matrix alloy (review),” Trudy VIAM, No. 2, 62–73 (2018). E. A. Stoyakina, E. I. Kurbatkina, V. N. Simonov, D. V. Kosolapov, and A. V. Gololobov, “Mechanical properties of aluminum-matrix composites reinforced with SiC particles, depending on the matrix alloy (review),” Trudy VIAM, No. 2, 62–73 (2018).
6.
go back to reference V. V. Vani and S. K. Chak, “The effect of process parameters in aluminum metal matrix composites with powder metallurgy,” Manuf. Rev. 5, 7 (2018). V. V. Vani and S. K. Chak, “The effect of process parameters in aluminum metal matrix composites with powder metallurgy,” Manuf. Rev. 5, 7 (2018).
7.
go back to reference E. I. Kurbatkina, A. A. Shavnev, D. V. Kosolapov, and A. V. Gololobov, “Features of heat treatment of composite materials with an aluminum matrix (review),” Trudy VIAM, No. 11, 82–97 (2017). E. I. Kurbatkina, A. A. Shavnev, D. V. Kosolapov, and A. V. Gololobov, “Features of heat treatment of composite materials with an aluminum matrix (review),” Trudy VIAM, No. 11, 82–97 (2017).
8.
go back to reference E. I. Kurbatkina, D. V. Kosolapov, A. V. Gololobov, and A. A. Shavnev, “Study of the structure and properties of a metallic composite material of the Al–Zn–Mg Cu/SiC system,” Tsvetn. Met., No. 1, 40–45 (2019). E. I. Kurbatkina, D. V. Kosolapov, A. V. Gololobov, and A. A. Shavnev, “Study of the structure and properties of a metallic composite material of the Al–Zn–Mg Cu/SiC system,” Tsvetn. Met., No. 1, 40–45 (2019).
9.
go back to reference J. Čadek, K. Kuchařová, and S. J. Zhu, “High temperature creep behaviour of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 283, No. 1–2, 172–180 (2000).CrossRef J. Čadek, K. Kuchařová, and S. J. Zhu, “High temperature creep behaviour of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 283, No. 1–2, 172–180 (2000).CrossRef
10.
go back to reference J. Čadek, K. Kuchařová, and S. J. Zhu, “Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 297, Nos. 1–2, 176–184 (2000).CrossRef J. Čadek, K. Kuchařová, and S. J. Zhu, “Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 297, Nos. 1–2, 176–184 (2000).CrossRef
11.
go back to reference Z. Y. Ma and S. C. Tjong, “High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–Si alloy composite,” Mater. Sci. Eng., A 278, Nos. 1–2, 5–15 (2000).CrossRef Z. Y. Ma and S. C. Tjong, “High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–Si alloy composite,” Mater. Sci. Eng., A 278, Nos. 1–2, 5–15 (2000).CrossRef
12.
go back to reference M. S. Kishchik, A. D. Kotov, A. A. Kishchik, A. V. Mikhailovskaya, D. O. Demin, and S. A. Aksenov, “The effect of multidirectional forging on the deformation and microstructure of the Al–Mg alloy,” Phys. Met. Metallogr. 121, No. 6, 597–603 (2020).CrossRef M. S. Kishchik, A. D. Kotov, A. A. Kishchik, A. V. Mikhailovskaya, D. O. Demin, and S. A. Aksenov, “The effect of multidirectional forging on the deformation and microstructure of the Al–Mg alloy,” Phys. Met. Metallogr. 121, No. 6, 597–603 (2020).CrossRef
13.
go back to reference A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhailovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, No. 5, 489–494 (2020).CrossRef A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhailovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, No. 5, 489–494 (2020).CrossRef
14.
go back to reference D. Božić, M. Vilotijević, V. Rajković, and Ž. Gnjidić, “Mechanical and fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature,” Mater. Sci. Forum 494, 487–492 (2005).CrossRef D. Božić, M. Vilotijević, V. Rajković, and Ž. Gnjidić, “Mechanical and fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature,” Mater. Sci. Forum 494, 487–492 (2005).CrossRef
15.
go back to reference M. Y. Wu and O. D. Sherby, “Superplasticity in a silicon carbide whisker reinforced aluminum alloy,” Scr. Metall. 18, No. 8, 773–776 (1984).CrossRef M. Y. Wu and O. D. Sherby, “Superplasticity in a silicon carbide whisker reinforced aluminum alloy,” Scr. Metall. 18, No. 8, 773–776 (1984).CrossRef
16.
go back to reference G. González-Doncel and O. D. Sherby, “Tensile ductility and fracture of superplastic Aluminum–SiC composites under thermal cycling conditions,” Metall. Mater. Trans. A 27, No. 9, 2837–2842 (1996).CrossRef G. González-Doncel and O. D. Sherby, “Tensile ductility and fracture of superplastic Aluminum–SiC composites under thermal cycling conditions,” Metall. Mater. Trans. A 27, No. 9, 2837–2842 (1996).CrossRef
17.
go back to reference A. Yu. Larichkin, K. V. Zakharchenko, B. V. Gorev, and V. I. Kapustin, “Experimental modeling of technological process of pure aluminum alloy (Al–Zn–Mg–Cu) structural elements forming under creep,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), No. 1, 6–15 (2016). A. Yu. Larichkin, K. V. Zakharchenko, B. V. Gorev, and V. I. Kapustin, “Experimental modeling of technological process of pure aluminum alloy (Al–Zn–Mg–Cu) structural elements forming under creep,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), No. 1, 6–15 (2016).
18.
go back to reference H. Luo, W. Li, C. Li, and M. Wan, “Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature,” Int. J. Adv. Manuf. Technol. 91, Nos. 9–12, 3265–3271 (2017).CrossRef H. Luo, W. Li, C. Li, and M. Wan, “Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature,” Int. J. Adv. Manuf. Technol. 91, Nos. 9–12, 3265–3271 (2017).CrossRef
19.
go back to reference J. R. Pickens, T. J. Langan, R. O. England, and M. Liebson, “A study of the hot-working behavior of SiC−Al alloy composites and their matrix alloys by hot torsion testing,” Metall. Mater. Trans. A 18, No. 2, 303–312 (1987).CrossRef J. R. Pickens, T. J. Langan, R. O. England, and M. Liebson, “A study of the hot-working behavior of SiC−Al alloy composites and their matrix alloys by hot torsion testing,” Metall. Mater. Trans. A 18, No. 2, 303–312 (1987).CrossRef
20.
go back to reference A. Razaghian, D. Yu, and T. Chandra, “Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature,” Compos. Sci. Technol. 58, No. 2, 293–298 (1998).CrossRef A. Razaghian, D. Yu, and T. Chandra, “Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature,” Compos. Sci. Technol. 58, No. 2, 293–298 (1998).CrossRef
21.
go back to reference Q. M. Azpen, B. T. H. T. Baharudin, S. Shamsuddin, and F. Mustapha, “Reinforcement and hot workability of aluminium alloy 7075 particulate composites: A review,” J. Eng. Sci. Technol. 13, No. 4, 1034–1057 (2018). Q. M. Azpen, B. T. H. T. Baharudin, S. Shamsuddin, and F. Mustapha, “Reinforcement and hot workability of aluminium alloy 7075 particulate composites: A review,” J. Eng. Sci. Technol. 13, No. 4, 1034–1057 (2018).
22.
go back to reference D. I. Kryuchkov and A. V. Nesterenko, “A review of experimental studies of creep behavior and superplasticity in a discontinuous sic aluminum-matrix composites,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty) 22, No. 2, 130–157 (2020). D. I. Kryuchkov and A. V. Nesterenko, “A review of experimental studies of creep behavior and superplasticity in a discontinuous sic aluminum-matrix composites,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty) 22, No. 2, 130–157 (2020).
23.
go back to reference S. V. Smirnov, D. I. Kryuchkov, A. V. Nesterenko, I. M. Berezin, D. I. Vichuzhanin, “Experimental study of short-term unsteady creep of an aluminum-matrix composite under uniaxial compression,” VPNIPU. Mekhanika, No. 4, 98–105 (2018). S. V. Smirnov, D. I. Kryuchkov, A. V. Nesterenko, I. M. Berezin, D. I. Vichuzhanin, “Experimental study of short-term unsteady creep of an aluminum-matrix composite under uniaxial compression,” VPNIPU. Mekhanika, No. 4, 98–105 (2018).
24.
go back to reference N. B. Pugacheva, N. S. Michurov, E. I. Senaeva, and T. M. Bykova, “Structure and thermophysical properties of aluminum-matrix composites,” Phys. Met. Metallogr. 117, No. 11, 1144–1151 (2016).CrossRef N. B. Pugacheva, N. S. Michurov, E. I. Senaeva, and T. M. Bykova, “Structure and thermophysical properties of aluminum-matrix composites,” Phys. Met. Metallogr. 117, No. 11, 1144–1151 (2016).CrossRef
25.
go back to reference N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, No. 6, 634–640 (2016).CrossRef N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, No. 6, 634–640 (2016).CrossRef
26.
go back to reference N. B. Pugacheva, I. Yu. Malygina, N. S. Michurov, E. I. Senaeva, and N. P. Antenorova, “Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide,” Diag., Resour. Mech. Mater. Struct., No. 6, 28–36 (2017). N. B. Pugacheva, I. Yu. Malygina, N. S. Michurov, E. I. Senaeva, and N. P. Antenorova, “Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide,” Diag., Resour. Mech. Mater. Struct., No. 6, 28–36 (2017).
27.
go back to reference B. N. Arzamasov and T. V. Solov’ev, Handbook on Structural Materials (MSTU after N. E. Bauman, Moscow, 2005) [in Russian]. B. N. Arzamasov and T. V. Solov’ev, Handbook on Structural Materials (MSTU after N. E. Bauman, Moscow, 2005) [in Russian].
Metadata
Title
Influence of All-Round Forging under Short-Term Creep Conditions on the Structure and Mechanical Properties of the Al7075/10SiCp Composite with an Aluminum Matrix
Authors
D. I. Kryuchkov
A. V. Nesterenko
S. V. Smirnov
N. B. Pugacheva
D. I. Vichuzhanin
T. M. Bykova
Publication date
01-10-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21100069

Other articles of this Issue 10/2021

Physics of Metals and Metallography 10/2021 Go to the issue