Skip to main content
Top

2024 | OriginalPaper | Chapter

Influence of Capping Ligands on Metal-Nanoparticle-Driven Hydrogen Evolution and CO2 Reduction Reactions

Authors : Gerard Martí, Álvaro Lozano-Roche, Nuria Romero, Laia Francàs, Karine Philippot, Roger Bofill, Jordi García-Antón, Xavier Sala

Published in: Surface Functionalized Metal Catalysts

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter looks into the influence of the functionalization of the surface of metal nanoparticles (MNPs) with ligands on their catalytic performance in two crucial reactions, the hydrogen evolution reaction (HER) and the CO2 reduction reaction (CO2RR). The birth of the surface functionalization of MNPs with ligands was greatly inspired by the advanced knowledge accumulated on molecular metal catalysts, whose physical and chemical properties can be tuned by coordinating appropriate ligands to the metal active center. This field of research has profited from the progress in the synthetic methods for the generation of MNPs and the evolution of the spectroscopic and analytical techniques for their exhaustive characterization, as well as the improvement of the computational techniques. Relevant examples will illustrate how the functionalization of the surface of MNPs allow to modulate the energy profile of catalytic intermediate species through electronic effects and regulate the product selectivity through hydrophobic/hydrophilic effects. Another key parameter is the tuning of the number of surface-active sites as a function of the metal to ligand ratio and the chemical nature of the coordinating ligand. Furthermore, in some peculiar cases, second coordination sphere effects have even been described in analogy to biological enzymes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control.1st edn. Elsevier Science, Amsterdam Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control.1st edn. Elsevier Science, Amsterdam
2.
go back to reference Schmid G (2010) Nanoparticles from theory to application.2nd edn. Wiley-VCHCrossRef Schmid G (2010) Nanoparticles from theory to application.2nd edn. Wiley-VCHCrossRef
4.
go back to reference Rocoux A, Philippot K (2021) Nanoparticles in catalysis: advances in synthesis and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Rocoux A, Philippot K (2021) Nanoparticles in catalysis: advances in synthesis and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
26.
46.
go back to reference Philippot K, Chaudret B (2003) Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles. C R Chim 6:1019–1034CrossRef Philippot K, Chaudret B (2003) Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles. C R Chim 6:1019–1034CrossRef
47.
go back to reference Philippot K, Chaudret B (2007) Organometallic derived metals, colloids and nanoparticles. In: Crabtree RH, Mingos MP (eds) Comprehensive organometallic chemistry III. Elsevier, pp 71–99 Philippot K, Chaudret B (2007) Organometallic derived metals, colloids and nanoparticles. In: Crabtree RH, Mingos MP (eds) Comprehensive organometallic chemistry III. Elsevier, pp 71–99
48.
go back to reference Lara P, Philippot K, Lacroix L-M et al (2013) Organometallic Nanoparticles. In: Advances in organometallic chemistry and catalysis. Wiley, pp 421–436CrossRef Lara P, Philippot K, Lacroix L-M et al (2013) Organometallic Nanoparticles. In: Advances in organometallic chemistry and catalysis. Wiley, pp 421–436CrossRef
57.
go back to reference Denicourt-Nowicki A, Roucoux A (2014) Ammonium surfactant-capped Rh(0) nanoparticles for biphasic hydrogenation. In: Tao F (ed) Metal nanoparticles for catalysis: advances and applications, pp 99–111CrossRef Denicourt-Nowicki A, Roucoux A (2014) Ammonium surfactant-capped Rh(0) nanoparticles for biphasic hydrogenation. In: Tao F (ed) Metal nanoparticles for catalysis: advances and applications, pp 99–111CrossRef
59.
go back to reference Denicourt-Nowicki A, Mordvinova N, Roucoux A (2021) Metal nanoparticles in water: a relevant toolbox for green catalysis. In: Philippot K, Roucoux A (eds) Nanoparticles in catalysis: advances in synthesis and applications1st edn. Wiley, pp 45–71 Denicourt-Nowicki A, Mordvinova N, Roucoux A (2021) Metal nanoparticles in water: a relevant toolbox for green catalysis. In: Philippot K, Roucoux A (eds) Nanoparticles in catalysis: advances in synthesis and applications1st edn. Wiley, pp 45–71
61.
go back to reference Axet MR, Philippot K (2021) Organometallic metal nanoparticles for catalysis. In: Nanoparticles in catalysis: advances in synthesis and applications. Wiley-VCH, Weinheim, pp 73–97CrossRef Axet MR, Philippot K (2021) Organometallic metal nanoparticles for catalysis. In: Nanoparticles in catalysis: advances in synthesis and applications. Wiley-VCH, Weinheim, pp 73–97CrossRef
91.
go back to reference Romero N, Creus J, García-Antón J et al (2021) Rebirth of ruthenium-based nanomaterials for the hydrogen evolution reaction. In: Nanoparticles catalysis, pp 257–277CrossRef Romero N, Creus J, García-Antón J et al (2021) Rebirth of ruthenium-based nanomaterials for the hydrogen evolution reaction. In: Nanoparticles catalysis, pp 257–277CrossRef
93.
go back to reference Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S (1979) Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S (1979) Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef
94.
go back to reference del Rosal I, Poteau R (2021) Sabatier principle and surface properties of small ruthenium nanoparticles and clusters: case studies. In: Nanoparticles in catalysis. Wiley, pp 331–351CrossRef del Rosal I, Poteau R (2021) Sabatier principle and surface properties of small ruthenium nanoparticles and clusters: case studies. In: Nanoparticles in catalysis. Wiley, pp 331–351CrossRef
98.
go back to reference Johnson D, Qiao Z, Djire A (2021) Progress and challenges of carbon dioxide reduction reaction on transition metal based electrocatalysts. ACS Appl Energy Mater 4:8661–8684CrossRef Johnson D, Qiao Z, Djire A (2021) Progress and challenges of carbon dioxide reduction reaction on transition metal based electrocatalysts. ACS Appl Energy Mater 4:8661–8684CrossRef
99.
go back to reference Xie C, Niu Z, Kim D et al (2020) Surface and interface control in nanoparticle catalysis. Chem Rev 120:1184–1249CrossRefPubMed Xie C, Niu Z, Kim D et al (2020) Surface and interface control in nanoparticle catalysis. Chem Rev 120:1184–1249CrossRefPubMed
120.
go back to reference Youngblood WJ, Lee SA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefPubMed Youngblood WJ, Lee SA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefPubMed
121.
go back to reference Corby S, Rao RR, Steier L, Durrant JR (2021) The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater 6:1136–1155CrossRef Corby S, Rao RR, Steier L, Durrant JR (2021) The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat Rev Mater 6:1136–1155CrossRef
124.
go back to reference Kawawaki T, Akinaga Y, Yazaki D et al (2023) Promoting photocatalytic carbon dioxide reduction by tuning the properties of cocatalysts. Chem A Eur J 29 Kawawaki T, Akinaga Y, Yazaki D et al (2023) Promoting photocatalytic carbon dioxide reduction by tuning the properties of cocatalysts. Chem A Eur J 29
125.
go back to reference Liu L, Zhang X, Yang L et al (2017) Metal nanoparticles induced photocatalysis. Natl Sci Rev 4:761–780CrossRef Liu L, Zhang X, Yang L et al (2017) Metal nanoparticles induced photocatalysis. Natl Sci Rev 4:761–780CrossRef
126.
go back to reference Nasrallah H, Douma F, Hamoud HI, El-Roz M (2021) Metal nanoparticles in photocatalysis: advances and challenges. In: Nanostructured photocatalysts: from fundamental to practical applications. Elsevier, pp 119–143CrossRef Nasrallah H, Douma F, Hamoud HI, El-Roz M (2021) Metal nanoparticles in photocatalysis: advances and challenges. In: Nanostructured photocatalysts: from fundamental to practical applications. Elsevier, pp 119–143CrossRef
Metadata
Title
Influence of Capping Ligands on Metal-Nanoparticle-Driven Hydrogen Evolution and CO2 Reduction Reactions
Authors
Gerard Martí
Álvaro Lozano-Roche
Nuria Romero
Laia Francàs
Karine Philippot
Roger Bofill
Jordi García-Antón
Xavier Sala
Copyright Year
2024
DOI
https://doi.org/10.1007/3418_2024_116