Skip to main content
Top
Published in:

30-06-2023

Influence of carrier transport on modulation characteristics of quantum-well semiconductor lasers

Authors: Moustafa Ahmed, Maan Al-Alhumaidi

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss modeling the influence of carrier transport phenomena in quantum well (QW) semiconductor lasers on the device's current modulation characteristics. The escape and capture of charge carriers between the QW and the separate confinement heterostructure (SCH) are considered the major carrier transport phenomena. The small-signal analysis is applied to linearize the QW laser's rate equations and obtain expressions for the intensity modulation (IM) response. The carrier transport is assessed in terms of the lifetimes of the carrier escape and capture processes. In this study, we evaluated the impacts of these transport times on both the modulation bandwidth and response peak frequency. In addition, we used the obtained results to assess the tolerance of using the simple standard two-rate equation (STREs) model to describe the modulation properties of QW lasers. We demonstrate that when the capture lifetime is less than 20 ps and the escape lifetime is greater than 0.1 ps, the modulation bandwidth and response peak frequency reach their maximum values, which interestingly match the results simulated by the STRE model. With departures from the ideal ranges of these transport lifetimes, the tolerance of applying STREs becomes poorer. The findings in this study advance and supplement the theory and simulation of QW laser diodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chow, W.W., Sargent III, M.: Semiconductor Laser Physics. Springer, Berlin (1994)CrossRef Chow, W.W., Sargent III, M.: Semiconductor Laser Physics. Springer, Berlin (1994)CrossRef
2.
go back to reference Agrawal, G.P., Dutta, N.K.: Semiconductor Laser. Van Nostrand Reinhold, New York (1993)CrossRef Agrawal, G.P., Dutta, N.K.: Semiconductor Laser. Van Nostrand Reinhold, New York (1993)CrossRef
3.
go back to reference Doany, F.E., Schares, L., Schow, C.L., Schuster, C., Kuchta, D.M., Pepeljugoski, P.K.: Chip-to-chip optical interconnects. OFC, Anaheim, CA, USA, OFA3 (2006). Doany, F.E., Schares, L., Schow, C.L., Schuster, C., Kuchta, D.M., Pepeljugoski, P.K.: Chip-to-chip optical interconnects. OFC, Anaheim, CA, USA, OFA3 (2006).
4.
go back to reference Yamaoka, S., Diamantopoulos, N.P., Nishi, H., Nakao, R., Fujii, T., Takeda, K., Hiraki, T., Tsurugaya, T., Kanazawa, S., Tanobe, H., Kakitsuka, T., Tsuchizawa, T., Koyama, F., Matsuo, S.: Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photon 15, 28–35 (2021)CrossRef Yamaoka, S., Diamantopoulos, N.P., Nishi, H., Nakao, R., Fujii, T., Takeda, K., Hiraki, T., Tsurugaya, T., Kanazawa, S., Tanobe, H., Kakitsuka, T., Tsuchizawa, T., Koyama, F., Matsuo, S.: Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photon 15, 28–35 (2021)CrossRef
5.
go back to reference Ahmed, M., Bakry, A., Altuwirqi, R., Alghamdi, M.S., Koyama, F.: Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in millimeter-wave radio over fiber links. Jap. J. Appl. Phys. 52, 124103 (2013)CrossRef Ahmed, M., Bakry, A., Altuwirqi, R., Alghamdi, M.S., Koyama, F.: Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in millimeter-wave radio over fiber links. Jap. J. Appl. Phys. 52, 124103 (2013)CrossRef
6.
go back to reference Sasada, N., Nakajima, T., Sekino, Y., Naanishi, A., Mukaikubo, M., Ebisu, M., Mitaki, M., Hayakawa, S., Naoe, K.: Wide-temperature-range (25–80° C) 53-Gbaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission. J. Lightw. Technol. 37(7), 1686–1689 (2019)CrossRef Sasada, N., Nakajima, T., Sekino, Y., Naanishi, A., Mukaikubo, M., Ebisu, M., Mitaki, M., Hayakawa, S., Naoe, K.: Wide-temperature-range (25–80° C) 53-Gbaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission. J. Lightw. Technol. 37(7), 1686–1689 (2019)CrossRef
7.
go back to reference Uomi, K., Sasaki, S., Tsuchiya, T., Nakano, H., Chinone, N.: Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers. IEEE Photon. Technol. Lett. 2, 229–230 (1990)CrossRef Uomi, K., Sasaki, S., Tsuchiya, T., Nakano, H., Chinone, N.: Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers. IEEE Photon. Technol. Lett. 2, 229–230 (1990)CrossRef
8.
go back to reference Morton, P.A., Logan, R.A., Tanbnun-Ek, T., Sciortino, P.F., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwidth 1.55μm GaInAsP p-doped strained multiquantum-well lasers. Electron Lett 23(28), 2156–2157 (1992)CrossRef Morton, P.A., Logan, R.A., Tanbnun-Ek, T., Sciortino, P.F., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwidth 1.55μm GaInAsP p-doped strained multiquantum-well lasers. Electron Lett 23(28), 2156–2157 (1992)CrossRef
9.
go back to reference Uomi, K., Aoki, M., Tsuchiya, T., Takai, A.: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 29, 355–360 (1993)CrossRef Uomi, K., Aoki, M., Tsuchiya, T., Takai, A.: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 29, 355–360 (1993)CrossRef
10.
go back to reference Kito, M., Otsuka, N., Ishino, M., Fujihara, K., Matsui, Y.: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers. IEEE Photon. Technol. Lett. 6, 690–693 (1994)CrossRef Kito, M., Otsuka, N., Ishino, M., Fujihara, K., Matsui, Y.: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers. IEEE Photon. Technol. Lett. 6, 690–693 (1994)CrossRef
11.
go back to reference Matsui, Y., Murai, H., Arahira, S., Ogawa, Y., Suzuki, A.: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)CrossRef Matsui, Y., Murai, H., Arahira, S., Ogawa, Y., Suzuki, A.: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)CrossRef
12.
go back to reference Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Kikawa, T., Hamano, F., Fujisaki, S., Taniguchi, T., Nomoto, E., Sawada, M., Yuasa, T.: 12.5-Gb/s direct modulation up to 115 C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. of lightwave Techn. 22, 159 (2004)CrossRef Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Kikawa, T., Hamano, F., Fujisaki, S., Taniguchi, T., Nomoto, E., Sawada, M., Yuasa, T.: 12.5-Gb/s direct modulation up to 115 C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. of lightwave Techn. 22, 159 (2004)CrossRef
13.
go back to reference Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., Mukaikubo, M.: 40-Gb/s direct modulation with high extinction ratio operation of 1.3- m InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photon. Technol. Lett. 19, 1436–1438 (2007)CrossRef Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., Mukaikubo, M.: 40-Gb/s direct modulation with high extinction ratio operation of 1.3- m InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photon. Technol. Lett. 19, 1436–1438 (2007)CrossRef
14.
go back to reference Otsubo, K., Matsuda, M., Takada, K., Okumura, S., Ekawa, M., Tanaka, H., Ide, S., Mori, K., Yamamoto, T.: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Select. TOP. Quantum Electron. 15, 687–693 (2009)CrossRef Otsubo, K., Matsuda, M., Takada, K., Okumura, S., Ekawa, M., Tanaka, H., Ide, S., Mori, K., Yamamoto, T.: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Select. TOP. Quantum Electron. 15, 687–693 (2009)CrossRef
15.
go back to reference Yamamoto, T., Uetake, A., Otsubo, K., Matsuda, M., Okumura, S., Tomabechi, S., Ekawa, M.: Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure. In: 22nd IEEE International Semiconductor Laser Conference, pp. 193–194. IEEE (2010). Yamamoto, T., Uetake, A., Otsubo, K., Matsuda, M., Okumura, S., Tomabechi, S., Ekawa, M.: Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure. In: 22nd IEEE International Semiconductor Laser Conference, pp. 193–194. IEEE (2010).
16.
go back to reference Kobayashi, W., Ito, T., Yamanaka, T., Fujisawa, T., Shibata, Y., Kurosaki, T., Kohtoku, M., Tadokoro, T., Sanjoh, H.: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908–1500908 (2013)CrossRef Kobayashi, W., Ito, T., Yamanaka, T., Fujisawa, T., Shibata, Y., Kurosaki, T., Kohtoku, M., Tadokoro, T., Sanjoh, H.: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908–1500908 (2013)CrossRef
17.
go back to reference Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3-$\mu $ m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photonics Technol. Lett. 27(5), 534–536 (2014)CrossRef Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3-$\mu $ m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photonics Technol. Lett. 27(5), 534–536 (2014)CrossRef
18.
go back to reference Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B., Xu, J., Cole, C., Roxlo, C.: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser. J. Lightwave Technol. 34(11), 2677–2683 (2016)CrossRef Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B., Xu, J., Cole, C., Roxlo, C.: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser. J. Lightwave Technol. 34(11), 2677–2683 (2016)CrossRef
19.
go back to reference Nishi, H., Fujii, T., Takeda, K., Hasebe, K., Kakitsuka, T., Tsuchizawa, T., Yamamoto, T., Yamada, K., Matsuo, S.: Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 24(16), 18346–18352 (2016)CrossRef Nishi, H., Fujii, T., Takeda, K., Hasebe, K., Kakitsuka, T., Tsuchizawa, T., Yamamoto, T., Yamada, K., Matsuo, S.: Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 24(16), 18346–18352 (2016)CrossRef
20.
go back to reference Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin-AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827 (1974)CrossRef Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin-AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827 (1974)CrossRef
21.
go back to reference van der Ziel, J.P., Dongle, R., Miller, R.C., Wiegman, W., Nordland, W.A., Jr.: Laser oscillation from quantum states in very thin GaAs−Al 0.2 Ga 0.8 As multilayer structures. Appl. Phys. Lett. 26, 463 (1975)CrossRef van der Ziel, J.P., Dongle, R., Miller, R.C., Wiegman, W., Nordland, W.A., Jr.: Laser oscillation from quantum states in very thin GaAs−Al 0.2 Ga 0.8 As multilayer structures. Appl. Phys. Lett. 26, 463 (1975)CrossRef
22.
go back to reference Holonyak, R.M., Jr., Kolbas, R.D.: Dupuis, and PD Dapkus. IEEE J. Quant. Electron. QE-16, 170 (1980)CrossRef Holonyak, R.M., Jr., Kolbas, R.D.: Dupuis, and PD Dapkus. IEEE J. Quant. Electron. QE-16, 170 (1980)CrossRef
23.
go back to reference Weisser, S., Larkins, E.C., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J. D., Romero, B., Sah, R.E., Schenfelder, A., Reosenzweig, J.: Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity Ino.3jGao.6jAs-GaAs multiple quantum-well lasers. IEEE Photon. Technol. Lett. Weisser, S., Larkins, E.C., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J. D., Romero, B., Sah, R.E., Schenfelder, A., Reosenzweig, J.: Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity Ino.3jGao.6jAs-GaAs multiple quantum-well lasers. IEEE Photon. Technol. Lett.
24.
go back to reference Sato, K., Kuwahar, S., Miyamoto, Y.: Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes. J. Lightwave Technol. 23(11), 3790 (2005)CrossRef Sato, K., Kuwahar, S., Miyamoto, Y.: Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes. J. Lightwave Technol. 23(11), 3790 (2005)CrossRef
25.
go back to reference Morton, P.A., Logan, R.A., Tanbun-Ek, T., Sciortino, P.F., Jr., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwith 1.55 µm GaInAsP p-doped strained multiquantum well lasers. Electron. Lett. 28, 2156–2157 (1992)CrossRef Morton, P.A., Logan, R.A., Tanbun-Ek, T., Sciortino, P.F., Jr., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwith 1.55 µm GaInAsP p-doped strained multiquantum well lasers. Electron. Lett. 28, 2156–2157 (1992)CrossRef
26.
go back to reference Nagarajan, R., Ishikawa, M., Fukushima, T., Gills, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992)CrossRef Nagarajan, R., Ishikawa, M., Fukushima, T., Gills, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992)CrossRef
27.
go back to reference Kan, S.C., Vassilovski, D., Wu, T.C., Lau, K.Y.: On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers. Appl. Phys. Lett. 61, 752–754 (1992)CrossRef Kan, S.C., Vassilovski, D., Wu, T.C., Lau, K.Y.: On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers. Appl. Phys. Lett. 61, 752–754 (1992)CrossRef
28.
go back to reference Homar, M., Mirasso, C.R., Esquivias, I., San Miguel, M.: Modulation response of quantum-well lasers with carrier transport effects under weak optical feedback. IEEE Photon. Lett. 8, 861–863 (1996)CrossRef Homar, M., Mirasso, C.R., Esquivias, I., San Miguel, M.: Modulation response of quantum-well lasers with carrier transport effects under weak optical feedback. IEEE Photon. Lett. 8, 861–863 (1996)CrossRef
29.
go back to reference Nagarajan, R., Fukushima, T., Corzine, S.W., Bowers, J.E.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59, 1835 (1991)CrossRef Nagarajan, R., Fukushima, T., Corzine, S.W., Bowers, J.E.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59, 1835 (1991)CrossRef
30.
go back to reference Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping. Appl. Phys. Lett. 58, 2326 (1991)CrossRef Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping. Appl. Phys. Lett. 58, 2326 (1991)CrossRef
31.
go back to reference Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: Single quantum well strained InGaAs/GaAs lasers with large modulation bandwidth and low damping. Electron. Lett. 27, 1058 (1991)CrossRef Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: Single quantum well strained InGaAs/GaAs lasers with large modulation bandwidth and low damping. Electron. Lett. 27, 1058 (1991)CrossRef
32.
go back to reference Arakawa, Y., Yariv, A.: Quantum well lasers-gain, spectra, dynamics. IEEE J. Quantum Electron. 22, 1887–1899 (1986)CrossRef Arakawa, Y., Yariv, A.: Quantum well lasers-gain, spectra, dynamics. IEEE J. Quantum Electron. 22, 1887–1899 (1986)CrossRef
33.
go back to reference Mena, P.V.: Circuit-level modeling and simulation of semiconductor lasers. Ph. D. Thesis, University of Illinois at Urbana-Champaign (1998) Mena, P.V.: Circuit-level modeling and simulation of semiconductor lasers. Ph. D. Thesis, University of Illinois at Urbana-Champaign (1998)
34.
go back to reference Bogdan, L., Sterian, P., Popescu, M.O.: Rate equations based models for quantum-well laser characterisation. Proc. SPIE 5226, 97–83 (2003) Bogdan, L., Sterian, P., Popescu, M.O.: Rate equations based models for quantum-well laser characterisation. Proc. SPIE 5226, 97–83 (2003)
35.
go back to reference Ahmed, M.F., Bakry, A.H., Albelady, F.T.: Digital modulation characteristics of high-speed semiconductor laser for use in optical communication systems. Arab. J. Sci. Eng. 39(7), 5745–5752 (2014)CrossRef Ahmed, M.F., Bakry, A.H., Albelady, F.T.: Digital modulation characteristics of high-speed semiconductor laser for use in optical communication systems. Arab. J. Sci. Eng. 39(7), 5745–5752 (2014)CrossRef
36.
go back to reference Ahmed, M.: Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys. Wave Phenomena 22(4), 266–272 (2014)CrossRef Ahmed, M.: Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys. Wave Phenomena 22(4), 266–272 (2014)CrossRef
37.
go back to reference Yamada, M., Haraguchi, Y.: Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuations in optical guiding layers. IEEE J. Quantum Electron. 29, 1676–1681 (1991)CrossRef Yamada, M., Haraguchi, Y.: Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuations in optical guiding layers. IEEE J. Quantum Electron. 29, 1676–1681 (1991)CrossRef
38.
go back to reference Keating, T., Jin, X., Chuang, S.L., Fellow, I.E.E.E., Hess, K.: Fellow IEEE. Temperature dependence of electrical and optical modulation responses of quantum-well lasers. IEEE J. Quantum Electron. 35, 1526–1534 (1999)CrossRef Keating, T., Jin, X., Chuang, S.L., Fellow, I.E.E.E., Hess, K.: Fellow IEEE. Temperature dependence of electrical and optical modulation responses of quantum-well lasers. IEEE J. Quantum Electron. 35, 1526–1534 (1999)CrossRef
39.
go back to reference Polland, H.-J., Leo, K., Rother, K., Ploog, K., Feldman, J., Peter, G., Gobel, E.O.: Trapping of carriers in single quantum wells with different configuration of the confinement layers. Phys. Rev. B(38), 7635–7648 (1988)CrossRef Polland, H.-J., Leo, K., Rother, K., Ploog, K., Feldman, J., Peter, G., Gobel, E.O.: Trapping of carriers in single quantum wells with different configuration of the confinement layers. Phys. Rev. B(38), 7635–7648 (1988)CrossRef
40.
go back to reference Morin, S., Deveaud, B., Clerot, F., Fujiwara, K., Mitsunaga, K.: Capture of photoexcited carriers in a single quantum well with different confinement structures. IEEE J. Quanrum Electron. 27, 1669–1675 (1991)CrossRef Morin, S., Deveaud, B., Clerot, F., Fujiwara, K., Mitsunaga, K.: Capture of photoexcited carriers in a single quantum well with different confinement structures. IEEE J. Quanrum Electron. 27, 1669–1675 (1991)CrossRef
41.
go back to reference Kassa W.E.: Electrical modeling of semiconductor laser for high data rate wireless communication. Ph.D. Thesis, University of Paris-Est (2015). Kassa W.E.: Electrical modeling of semiconductor laser for high data rate wireless communication. Ph.D. Thesis, University of Paris-Est (2015).
42.
go back to reference Weisser, S., Esquivias, I., Tasker, P.J., Ralston, J.D., Rosenzweig, J.: Impedance, modulation response, and equivalent circuit of ultra-high-speed Ino.x, Gaa.ejAs/GaAs MQW lasers with p-doping. IEEE Photon. Technol. Lett. 6, 782–785 (1994)CrossRef Weisser, S., Esquivias, I., Tasker, P.J., Ralston, J.D., Rosenzweig, J.: Impedance, modulation response, and equivalent circuit of ultra-high-speed Ino.x, Gaa.ejAs/GaAs MQW lasers with p-doping. IEEE Photon. Technol. Lett. 6, 782–785 (1994)CrossRef
43.
go back to reference Al-Otaibi, R., Ahmed, M.: Modelling of intensity noise, frequency noise and linewidth of semiconductor laser and their dependence on optical gain formulation. Paraman J. Phys. 95, 138 (2021)CrossRef Al-Otaibi, R., Ahmed, M.: Modelling of intensity noise, frequency noise and linewidth of semiconductor laser and their dependence on optical gain formulation. Paraman J. Phys. 95, 138 (2021)CrossRef
44.
go back to reference Tsai, C.Y., Shih, F.P., Sung, T.L., Wu, T.Y., Chen, C.H., Tsai, C.Y.: A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape. IEEE J. Quantum Electron. 33, 2084–2096 (1997)CrossRef Tsai, C.Y., Shih, F.P., Sung, T.L., Wu, T.Y., Chen, C.H., Tsai, C.Y.: A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape. IEEE J. Quantum Electron. 33, 2084–2096 (1997)CrossRef
45.
go back to reference Talele, K., Samuel, E.P., Patil, D.S.: Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122, 626–630 (2011)CrossRef Talele, K., Samuel, E.P., Patil, D.S.: Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122, 626–630 (2011)CrossRef
46.
go back to reference Nagarajan, R.: Carrier transport effects in quantum well lasers: an overview. Opt. and Quantum Electron. 26, S647–S666 (1994)CrossRef Nagarajan, R.: Carrier transport effects in quantum well lasers: an overview. Opt. and Quantum Electron. 26, S647–S666 (1994)CrossRef
47.
go back to reference Borruel, L., Arias, J., Romeroa, B., Esquiviasa, I.: Incorporation of carrier capture and escape processes into a self-consistent cw model for Quantum Well lasers. Microelectron. J. 34, 675–677 (2003)CrossRef Borruel, L., Arias, J., Romeroa, B., Esquiviasa, I.: Incorporation of carrier capture and escape processes into a self-consistent cw model for Quantum Well lasers. Microelectron. J. 34, 675–677 (2003)CrossRef
48.
go back to reference Hirayama, H., Yoshida, I., Miyake, Y., Asada, M.: Estimation of carrier capture time of quantum‐well lasers by spontaneous emission spectra. Appl. Phys. Lett. 61, 2398 (1992)CrossRef Hirayama, H., Yoshida, I., Miyake, Y., Asada, M.: Estimation of carrier capture time of quantum‐well lasers by spontaneous emission spectra. Appl. Phys. Lett. 61, 2398 (1992)CrossRef
49.
go back to reference Kersting, R., Schweler, R., Wolter, K., Leo, K., Kurz, H.: Dynamics of carrier transport and carrier capture in In 1− x Ga x As/InP heterostructures. Phys. Rev. E 46, 1639 (1992)CrossRef Kersting, R., Schweler, R., Wolter, K., Leo, K., Kurz, H.: Dynamics of carrier transport and carrier capture in In 1− x Ga x As/InP heterostructures. Phys. Rev. E 46, 1639 (1992)CrossRef
50.
go back to reference Grabmaier, A., Schiifthaler, M., Hangleiter, A.: Carrier transport limited bandwidth of 1.55 μm quantum-well lasers. Appl. Phys. Lett. 62, 52–54 (1993)CrossRef Grabmaier, A., Schiifthaler, M., Hangleiter, A.: Carrier transport limited bandwidth of 1.55 μm quantum-well lasers. Appl. Phys. Lett. 62, 52–54 (1993)CrossRef
51.
go back to reference Wasiak, M., Spiewak, P., Haghighi, N., Gebski, M., Karbownik, E.P., Komar, P., Lott, J.A., Sarzała, R.P.: Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers. J. Phys. D Appl. Phys. 53, 345101 (2020)CrossRef Wasiak, M., Spiewak, P., Haghighi, N., Gebski, M., Karbownik, E.P., Komar, P., Lott, J.A., Sarzała, R.P.: Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers. J. Phys. D Appl. Phys. 53, 345101 (2020)CrossRef
52.
go back to reference Yamada, M.: Theory of Semiconductor Lasers. Springer, Japan (2016) Yamada, M.: Theory of Semiconductor Lasers. Springer, Japan (2016)
53.
go back to reference Ahmed, M.: Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes. Intl. J. Numer. Model. 17, 147–163 (2004)MATHCrossRef Ahmed, M.: Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes. Intl. J. Numer. Model. 17, 147–163 (2004)MATHCrossRef
Metadata
Title
Influence of carrier transport on modulation characteristics of quantum-well semiconductor lasers
Authors
Moustafa Ahmed
Maan Al-Alhumaidi
Publication date
30-06-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02060-6