Skip to main content
Top
Published in:

27-12-2022 | Technical Article

Influence of Ceramic Freeze-Casting Temperature on the Anisotropic Thermal Expansion Behavior of Corresponding Interpenetrating Metal/Ceramic Composites

Authors: Siddhartha Roy, Pascal Albrecht, Kay André Weidenmann

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interpenetrating phase metal/ceramic composites (IPC) offer an optimum combination of strength, stiffness, wear resistance, and thermal properties. Ceramic preforms fabricated by freeze-casting are optimum for IPC fabrication due to the lamellar open porous structure of the preforms and their excellent permeability for melt infiltration. While the thermal properties of IPCs based on freeze-cast ceramic preforms have been sporadically studied, to the best of our knowledge, this is the maiden work where the influence of ceramic preform’s freeze-casting temperature and preform anisotropy on the thermal expansion behavior of the resulting IPC has been systematically investigated. Preforms were freeze-cast at two different temperatures, − 10, and − 30 °C. Thermal expansion behavior was studied by thermal cycling at a slow rate between room temperature and 500 °C. Both thermal strain and coefficient of thermal expansion (CTE) were determined as a function of temperature along the freezing direction and along a direction orthogonal to it. Elastic anisotropy present in the composite samples was estimated prior to the thermal expansion measurements using a non-destructive ultrasonic technique. The results showed that the lamellar anisotropic preform structure and corresponding elastic anisotropy had a strong influence on the composite’s thermal expansion behavior—generally, the highest thermal strain and CTE were achieved along the most compliant direction. The measured CTE values were compared with relevant analytical models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference G. Roudini, R. Tavangar, L. Weber and A. Mortensen, Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforced Aluminium Composites, Int. J. Mater. Res., 2010, 101, p 1113–1120.CrossRef G. Roudini, R. Tavangar, L. Weber and A. Mortensen, Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforced Aluminium Composites, Int. J. Mater. Res., 2010, 101, p 1113–1120.CrossRef
7.
go back to reference Y. Li, P. Shen, L. Yang and S.X.Q. Jiang, A Novel Approach to the Fabrication of Lamellar Al2O3/6061Al Composites with High-Volume Fractions of Hard Phases, Mater. Sci. Eng. A., 2019, 754, p 75–84.CrossRef Y. Li, P. Shen, L. Yang and S.X.Q. Jiang, A Novel Approach to the Fabrication of Lamellar Al2O3/6061Al Composites with High-Volume Fractions of Hard Phases, Mater. Sci. Eng. A., 2019, 754, p 75–84.CrossRef
8.
go back to reference Z. Hu, P. Shen and Q. Jiang, Developing High-Performance Laminated Cu/TiC Composites through Melt Infiltration of Ni-Doped Freeze-Cast Preforms, Ceram. Int., 2019, 45, p 11686–11693.CrossRef Z. Hu, P. Shen and Q. Jiang, Developing High-Performance Laminated Cu/TiC Composites through Melt Infiltration of Ni-Doped Freeze-Cast Preforms, Ceram. Int., 2019, 45, p 11686–11693.CrossRef
15.
go back to reference S. Deville, E. Saiz and A. Tomsia, Ice-Templated Porous Alumina Structures, Acta Mater., 2007, 55, p 1965–1974.CrossRef S. Deville, E. Saiz and A. Tomsia, Ice-Templated Porous Alumina Structures, Acta Mater., 2007, 55, p 1965–1974.CrossRef
28.
go back to reference S. Roy, Metal/Ceramic Composites from Freeze-Cast Preforms: Domain Structure and Mechanical Properties, Univ. Karlsr., 2009, 68(5), p 1136–1143. S. Roy, Metal/Ceramic Composites from Freeze-Cast Preforms: Domain Structure and Mechanical Properties, Univ. Karlsr., 2009, 68(5), p 1136–1143.
30.
go back to reference N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, New York, 2013.CrossRef N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, New York, 2013.CrossRef
31.
go back to reference K.K. Chawla, Composite Materials: Science and Engineering, Springer, Fourth, 2019.CrossRef K.K. Chawla, Composite Materials: Science and Engineering, Springer, Fourth, 2019.CrossRef
32.
go back to reference S. Roy, P. Albrecht, L. Przybilla, K.A. Weidenmann, M. Heilmaier and A. Wanner, Effect of Phase Architecture on the Thermal Expansion Behavior of Interpenetrating Metal/Ceramic Composites, Ceram. Trans., 2013, 240, p 33–42.CrossRef S. Roy, P. Albrecht, L. Przybilla, K.A. Weidenmann, M. Heilmaier and A. Wanner, Effect of Phase Architecture on the Thermal Expansion Behavior of Interpenetrating Metal/Ceramic Composites, Ceram. Trans., 2013, 240, p 33–42.CrossRef
42.
go back to reference J. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis, Springer, New York, 1999.CrossRef J. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis, Springer, New York, 1999.CrossRef
43.
go back to reference J.F. Nye, Physical Properties of Crystals, Oxford Science Publications, Oxford, 2006. J.F. Nye, Physical Properties of Crystals, Oxford Science Publications, Oxford, 2006.
44.
go back to reference F. Delannay, Thermal Stresses and Thermal Expansion in MMCs, in: Compr. Compos. Mater. V 2000. F. Delannay, Thermal Stresses and Thermal Expansion in MMCs, in: Compr. Compos. Mater. V 2000.
46.
go back to reference T. Courtney, Mechanical Behavior of Materials, Waveland Press, Inc., 2005. T. Courtney, Mechanical Behavior of Materials, Waveland Press, Inc., 2005.
47.
go back to reference W.D.J. Callister and D.G. Rethwisch, Materials Science and Engineering - An Introduction, John Wiley, New Jersey, 2009. W.D.J. Callister and D.G. Rethwisch, Materials Science and Engineering - An Introduction, John Wiley, New Jersey, 2009.
48.
go back to reference G. Korb, J. Korab and G. Groboth, Thermal Expansion Behaviour of Unidirectional Carbon-Fibre-Reinforced Copper-Matrix Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 1563–1567.CrossRef G. Korb, J. Korab and G. Groboth, Thermal Expansion Behaviour of Unidirectional Carbon-Fibre-Reinforced Copper-Matrix Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 1563–1567.CrossRef
51.
go back to reference H.E. Nassini and M. Moreno, Thermal Expansion Behavior of Aluminum Alloys Reinforced with Alumina Planar Random Short Fibers, J. Mater. Sci., 2001, 6, p 2759–2772.CrossRef H.E. Nassini and M. Moreno, Thermal Expansion Behavior of Aluminum Alloys Reinforced with Alumina Planar Random Short Fibers, J. Mater. Sci., 2001, 6, p 2759–2772.CrossRef
53.
go back to reference A. Mattern, Interpenetrierende Metall-Keramik-Verbundwerkstoffe mit isotropen und anisotropen Al2O3-Verstärkungen, University of Karlsruhe, 2004. A. Mattern, Interpenetrierende Metall-Keramik-Verbundwerkstoffe mit isotropen und anisotropen Al2O3-Verstärkungen, University of Karlsruhe, 2004.
56.
go back to reference D.K. Balch, T.J. Fitzgerald, V.J. Michaud, A. Mortensen, Y. Shen and S. Suresh, Thermal Expansion of Metals Reinforced with Ceramic Particles and Microcellular Foams, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 1996, 27P, p 3700–3717.CrossRef D.K. Balch, T.J. Fitzgerald, V.J. Michaud, A. Mortensen, Y. Shen and S. Suresh, Thermal Expansion of Metals Reinforced with Ceramic Particles and Microcellular Foams, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 1996, 27P, p 3700–3717.CrossRef
57.
go back to reference H. Boehm, H. Degischer, W. Lacom and J. Qu, Experimental and Theoretical Study of the Thermal Expansion Behavior of Aluminium Reinforced by Continuous Ceramic Fibers, Compos. Eng., 1995, 5, p 37–49.CrossRef H. Boehm, H. Degischer, W. Lacom and J. Qu, Experimental and Theoretical Study of the Thermal Expansion Behavior of Aluminium Reinforced by Continuous Ceramic Fibers, Compos. Eng., 1995, 5, p 37–49.CrossRef
58.
go back to reference Y. Shen, Combined Effects of Microvoids and Phase Contiguity on the Thermal Expansion of Metal-Ceramic Composites, Mater. Sci. Eng. A., 1997, 237, p 102–108.CrossRef Y. Shen, Combined Effects of Microvoids and Phase Contiguity on the Thermal Expansion of Metal-Ceramic Composites, Mater. Sci. Eng. A., 1997, 237, p 102–108.CrossRef
59.
go back to reference A. Kelly, C. Zweben and T.W. Clyne, Comprehensive Composite Materials Metal Matrix Composites, Elsevier, UK, 2000. A. Kelly, C. Zweben and T.W. Clyne, Comprehensive Composite Materials Metal Matrix Composites, Elsevier, UK, 2000.
60.
go back to reference P. Turner, Thermal Expansion Stresses in Reinforced Plastics, 1946. P. Turner, Thermal Expansion Stresses in Reinforced Plastics, 1946.
61.
go back to reference E.H. Kerner, The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. Sect. B., 1956, 69, p 808–813.CrossRef E.H. Kerner, The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. Sect. B., 1956, 69, p 808–813.CrossRef
62.
go back to reference L.I. Tuchinskii, Thermal Expansion of Composites with A Skeletal Structure, Powder Metall. Met. Ceram., 1983, 22, p 659–664.CrossRef L.I. Tuchinskii, Thermal Expansion of Composites with A Skeletal Structure, Powder Metall. Met. Ceram., 1983, 22, p 659–664.CrossRef
65.
go back to reference Granta Design Limited. CES EduPack 2011.2 Version 7.0. Computer-Software, (n.d.). Granta Design Limited. CES EduPack 2011.2 Version 7.0. Computer-Software, (n.d.).
66.
go back to reference J. Roesler, H. Harders and M. Baeker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, Germany, 2006. J. Roesler, H. Harders and M. Baeker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, Germany, 2006.
68.
go back to reference T. Huber, Thermal Expansion of Aluminum Alloys and Composites, TU Wien, 2003. T. Huber, Thermal Expansion of Aluminum Alloys and Composites, TU Wien, 2003.
Metadata
Title
Influence of Ceramic Freeze-Casting Temperature on the Anisotropic Thermal Expansion Behavior of Corresponding Interpenetrating Metal/Ceramic Composites
Authors
Siddhartha Roy
Pascal Albrecht
Kay André Weidenmann
Publication date
27-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07769-2

Premium Partners