Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2020

22-05-2020

Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy

Authors: M. Lotfpour, M. Emamy, C. Dehghanian

Published in: Journal of Materials Engineering and Performance | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effects of different Cu concentrations on the microstructure, mechanical, and corrosion properties of the extruded Mg-2%Zn alloy were studied by the use of x-ray diffraction, optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, tensile testing, polarization, and electrochemical impedance spectroscopy (EIS) measurements. The hot-extruded Mg-2%Zn comprised an equiaxed grain structure with the average size of about 13 μm. By adding 5 wt.% Cu, the average grain size decreased to 4 μm, due to the grain refinement behavior of Cu addition. Microstructural observations confirmed the existence of the α-Mg matrix, Mg(Zn,Cu), and Mg(Zn,Cu)2 intermetallics. The results obtained from mechanical testing revealed that Cu addition along with applying hot extrusion increased the hardness significantly from 80 HBN, for Cu-free alloy, to 108 HBN for the extruded Mg-2%Zn-5%Cu alloy. By the addition of 0.5 wt.% Cu, the values of ultimate tensile strength (UTS), elongation, and ultimate compressive strength (UCS) changed from about 233 MPa, 16.8%, and 294 MPa to 260 MPa, 21.5%, and 335 MPa, respectively, as optimum levels. However, more Cu addition (i.e., 5 wt.%) decreased UTS, elongation, and UCS values to 242 MPa, 15.9%, and 272 MPa, respectively, by introducing a high volume fraction of the second phase. On the other hand, tensile yield strength and compressive yield strength increased gradually at higher Cu additions from 128 to 105 MPa in the case of the Cu-free extruded alloy to 165 and 156 MPa for the alloy containing 5 wt.% Cu, respectively. The polarization and EIS results indicated that the extrusion process eliminates the protective film from the Mg-2%Zn alloy surface. The Mg-2%Zn alloy exhibited the best anti-corrosion property among the studied alloys, as further Cu addition increased the intermetallic volume fractions and enhanced the corrosion rate, due to the galvanic couple effect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, A High-Specific-Strength and Corrosion-Resistant Magnesium Alloy, Nat. Mater., 2015, 14, p 1229–1235CrossRef W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, A High-Specific-Strength and Corrosion-Resistant Magnesium Alloy, Nat. Mater., 2015, 14, p 1229–1235CrossRef
2.
go back to reference S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577CrossRef S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577CrossRef
3.
go back to reference S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640CrossRef S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640CrossRef
4.
go back to reference Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg-x%Zn Alloys, Corros. Sci., 2012, 65, p 322–330CrossRef Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg-x%Zn Alloys, Corros. Sci., 2012, 65, p 322–330CrossRef
5.
go back to reference C.J. Boehlert and K. Knittel, The Microstructure, Tensile Properties, and Creep Behavior of Mg-Zn Alloys Containing 0-4.4 wt.% Zn, Mater. Sci. Eng. A, 2006, 417, p 315–321CrossRef C.J. Boehlert and K. Knittel, The Microstructure, Tensile Properties, and Creep Behavior of Mg-Zn Alloys Containing 0-4.4 wt.% Zn, Mater. Sci. Eng. A, 2006, 417, p 315–321CrossRef
6.
go back to reference A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, and N. Hort, Investigations on Microstructures, Mechanical and Corrosion Properties of Mg-Gd-Zn alloys, Mater. Sci. Eng. A, 2014, 595, p 224–234CrossRef A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, and N. Hort, Investigations on Microstructures, Mechanical and Corrosion Properties of Mg-Gd-Zn alloys, Mater. Sci. Eng. A, 2014, 595, p 224–234CrossRef
7.
go back to reference Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg-5Zn Alloy, Corros. Sci., 2012, 60, p 238–245CrossRef Y. Song, E.H. Han, D. Shan, C.D. Yim, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg-5Zn Alloy, Corros. Sci., 2012, 60, p 238–245CrossRef
8.
go back to reference Y. Lu, R. Bradshaw, Y.L. Chiu, and I.P. Jones, The Role of Precipitates in the Bio-corrosion Performance of Mg-3Zn in Simulated body Fluid, J. Alloys. Compd., 2014, 614, p 345–352CrossRef Y. Lu, R. Bradshaw, Y.L. Chiu, and I.P. Jones, The Role of Precipitates in the Bio-corrosion Performance of Mg-3Zn in Simulated body Fluid, J. Alloys. Compd., 2014, 614, p 345–352CrossRef
9.
go back to reference Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, and Y. Dai, Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded Mg-Zn Alloys Produced by Powder Metallurgy, J. Alloys Compd., 2017, 693, p 1277–1289CrossRef Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, and Y. Dai, Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded Mg-Zn Alloys Produced by Powder Metallurgy, J. Alloys Compd., 2017, 693, p 1277–1289CrossRef
10.
go back to reference L. Liu, X. Chen, F. Pan, Z. Wang, W. Liu, P. Cao, T. Yan, and X. Xu, Effect of Y and Ce Additions on Microstructure and Mechanical Properties of Mg-Zn-Zr Alloys, Mater. Sci. Eng. A, 2015, 644, p 247–253CrossRef L. Liu, X. Chen, F. Pan, Z. Wang, W. Liu, P. Cao, T. Yan, and X. Xu, Effect of Y and Ce Additions on Microstructure and Mechanical Properties of Mg-Zn-Zr Alloys, Mater. Sci. Eng. A, 2015, 644, p 247–253CrossRef
11.
go back to reference Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, and B. Jiang, Improving Microstructure and Mechanical Properties in Mg-6 mass% Zn Alloys by Combined Addition of Ca and Ce, Mater. Sci. Eng. A, 2016, 656, p 67–74CrossRef Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, and B. Jiang, Improving Microstructure and Mechanical Properties in Mg-6 mass% Zn Alloys by Combined Addition of Ca and Ce, Mater. Sci. Eng. A, 2016, 656, p 67–74CrossRef
12.
go back to reference T. Bhattacharjee, T. Nakata, T.T. Sasaki, S. Kamado, and K. Hono, Effect of Microalloyed Zr on the Extruded Microstructure of Mg-6.2Zn-Based Alloys, Scr. Mater., 2014, 90-91, p 37–40CrossRef T. Bhattacharjee, T. Nakata, T.T. Sasaki, S. Kamado, and K. Hono, Effect of Microalloyed Zr on the Extruded Microstructure of Mg-6.2Zn-Based Alloys, Scr. Mater., 2014, 90-91, p 37–40CrossRef
13.
go back to reference M. Lotfpour, M. Emamy, C. Dehghanian, and K. Tavighi, Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy, J. Mater. Eng. Perform., 2017, 26, p 2136–2150CrossRef M. Lotfpour, M. Emamy, C. Dehghanian, and K. Tavighi, Influence of Cu Addition on the Structure, Mechanical and Corrosion Properties of Cast Mg-2%Zn Alloy, J. Mater. Eng. Perform., 2017, 26, p 2136–2150CrossRef
14.
go back to reference S. Zhu, T. Luo, T. Zhang, Y. Li, and Y. Yang, Effects of Cu Addition on the Microstructure and Mechanical Properties of As-Cast and Heat Treated Mg-6%Zn-4%Al Magnesium Alloy, Mater. Sci. Eng. A, 2017, 689, p 203–211CrossRef S. Zhu, T. Luo, T. Zhang, Y. Li, and Y. Yang, Effects of Cu Addition on the Microstructure and Mechanical Properties of As-Cast and Heat Treated Mg-6%Zn-4%Al Magnesium Alloy, Mater. Sci. Eng. A, 2017, 689, p 203–211CrossRef
15.
go back to reference C. Dehghanian, M. Lotfpour, and M. Emamy, The Microstructure, and Mechanical and Corrosion Properties of As-Cast and As-Extruded Mg-2%Zn-x%Cu Alloys After Solution and Aging Heat Treatments, J. Mater. Eng. Perform., 2019, 28, p 2305–2315CrossRef C. Dehghanian, M. Lotfpour, and M. Emamy, The Microstructure, and Mechanical and Corrosion Properties of As-Cast and As-Extruded Mg-2%Zn-x%Cu Alloys After Solution and Aging Heat Treatments, J. Mater. Eng. Perform., 2019, 28, p 2305–2315CrossRef
16.
go back to reference H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Growth Twinning Behavior of Cast Mg-Zn-Cu-Zr Alloys, Trans. Nonferrous Met. Soc., 2014, 24, p 316–320CrossRef H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Growth Twinning Behavior of Cast Mg-Zn-Cu-Zr Alloys, Trans. Nonferrous Met. Soc., 2014, 24, p 316–320CrossRef
17.
go back to reference J. Buha and T. Ohkubo, Natural Aging in Mg-Zn (-Cu) Alloys, Metall. Mater. Trans. A, 2008, 39, p 2259CrossRef J. Buha and T. Ohkubo, Natural Aging in Mg-Zn (-Cu) Alloys, Metall. Mater. Trans. A, 2008, 39, p 2259CrossRef
18.
go back to reference H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, R.K. Zheng, and S.P. Ringer, Microstructure and Mechanical Properties of Mg-6Zn-xCu-0.6Zr (wt%) Alloys, J. Alloys Compd., 2011, 509, p 3526–3531CrossRef H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, R.K. Zheng, and S.P. Ringer, Microstructure and Mechanical Properties of Mg-6Zn-xCu-0.6Zr (wt%) Alloys, J. Alloys Compd., 2011, 509, p 3526–3531CrossRef
19.
go back to reference H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu Addition on Microstructure and Mechanical Properties of As-Cast Magnesium Alloy ZK60, Trans. Nonferrous Met. Soc., 2014, 24, p 605–610CrossRef H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu Addition on Microstructure and Mechanical Properties of As-Cast Magnesium Alloy ZK60, Trans. Nonferrous Met. Soc., 2014, 24, p 605–610CrossRef
20.
go back to reference X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, and T. Yan, Microstructure, Electromagnetic Shielding Effectiveness and Mechanical Properties of Mg-Zn-Cu-Zr Alloys, Mater. Sci. Eng. B, 2015, 197, p 67–74CrossRef X. Chen, L. Liu, F. Pan, J. Mao, X. Xu, and T. Yan, Microstructure, Electromagnetic Shielding Effectiveness and Mechanical Properties of Mg-Zn-Cu-Zr Alloys, Mater. Sci. Eng. B, 2015, 197, p 67–74CrossRef
21.
go back to reference S. Golmakaniyoon and R. Mahmudi, Comparison of the Effects of La- and Ce-Rich Rare Earth Additions on the Microstructure, Creep Resistance, and High-Temperature Mechanical Properties of Mg-6Zn-3Cu Cast Alloy, Mater. Sci. Eng. A, 2011, 528, p 5228–5233CrossRef S. Golmakaniyoon and R. Mahmudi, Comparison of the Effects of La- and Ce-Rich Rare Earth Additions on the Microstructure, Creep Resistance, and High-Temperature Mechanical Properties of Mg-6Zn-3Cu Cast Alloy, Mater. Sci. Eng. A, 2011, 528, p 5228–5233CrossRef
22.
go back to reference J.H. Jun, J.M. Kim, B.K. Park, K.T. Kim, and W.J. Jung, Effects of Rare Earth Elements on Microstructure and High Temperature Mechanical Properties of ZC63 Alloy, J. Mater. Sci., 2005, 40, p 2659–2661CrossRef J.H. Jun, J.M. Kim, B.K. Park, K.T. Kim, and W.J. Jung, Effects of Rare Earth Elements on Microstructure and High Temperature Mechanical Properties of ZC63 Alloy, J. Mater. Sci., 2005, 40, p 2659–2661CrossRef
23.
go back to reference E.A. Ball and P.B. Prangnell, Tensile-Compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys, Scr. Mater., 1994, 31, p 111–116CrossRef E.A. Ball and P.B. Prangnell, Tensile-Compressive Yield Asymmetries in High Strength Wrought Magnesium Alloys, Scr. Mater., 1994, 31, p 111–116CrossRef
24.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004, p 285–319CrossRef F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004, p 285–319CrossRef
25.
go back to reference C.J. Wang, K.K. Deng, K.B. Nie, S.J. Shang, and W. Liang, Competition Behavior of the Strengthening Effects in As-Extruded AZ91 Matrix: Influence of Pre-existed Mg17Al12 Phase, Mater. Sci. Eng. A, 2016, 656, p 102–110CrossRef C.J. Wang, K.K. Deng, K.B. Nie, S.J. Shang, and W. Liang, Competition Behavior of the Strengthening Effects in As-Extruded AZ91 Matrix: Influence of Pre-existed Mg17Al12 Phase, Mater. Sci. Eng. A, 2016, 656, p 102–110CrossRef
26.
go back to reference C.A. Nijnez-lopez, P. Skeldon, G.E. Thompson, P. Lyon, H. Karimzadeh, and T.E. Wilks, The Corrosion Behaviour of Mg Alloy ZC71/SiCp Metal Matrix Composite, Corros. Sci., 1995, 37, p 689–708CrossRef C.A. Nijnez-lopez, P. Skeldon, G.E. Thompson, P. Lyon, H. Karimzadeh, and T.E. Wilks, The Corrosion Behaviour of Mg Alloy ZC71/SiCp Metal Matrix Composite, Corros. Sci., 1995, 37, p 689–708CrossRef
27.
go back to reference R. Xu, M.C. Zhao, Y.C. Zhao, L. Liu, C. Liu, C. Gao, C. Shuai, and A. Atrens, Improved Biodegradation Resistance by Grain Refinement of Novel Antibacterial ZK30-Cu Alloys Produced via Selective Laser Melting, Mater. Lett., 2019, 237, p 253–257CrossRef R. Xu, M.C. Zhao, Y.C. Zhao, L. Liu, C. Liu, C. Gao, C. Shuai, and A. Atrens, Improved Biodegradation Resistance by Grain Refinement of Novel Antibacterial ZK30-Cu Alloys Produced via Selective Laser Melting, Mater. Lett., 2019, 237, p 253–257CrossRef
28.
go back to reference S.-M. Baek, B. Kim, and S.S. Park, Influence of Intermetallic Particles on the Corrosion Properties of Extruded ZK60 Mg Alloy Containing Cu, Metals, 2018, 8, p 323CrossRef S.-M. Baek, B. Kim, and S.S. Park, Influence of Intermetallic Particles on the Corrosion Properties of Extruded ZK60 Mg Alloy Containing Cu, Metals, 2018, 8, p 323CrossRef
29.
go back to reference C. Shuaia, L. Liu, M. Zhao, P. Feng, Y. Yang, W. Guo, C. Gao, and F. Yuan, Microstructure, Biodegradation, Antibacterial and Mechanical Properties of ZK60-Cu Alloys Prepared by Selective Laser Melting Technique, J. Mater. Sci. Technol., 2018, 34(10), p 1944–1952CrossRef C. Shuaia, L. Liu, M. Zhao, P. Feng, Y. Yang, W. Guo, C. Gao, and F. Yuan, Microstructure, Biodegradation, Antibacterial and Mechanical Properties of ZK60-Cu Alloys Prepared by Selective Laser Melting Technique, J. Mater. Sci. Technol., 2018, 34(10), p 1944–1952CrossRef
30.
go back to reference C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, and P.K. Chu, Biodegradable Mg-Cu Alloys with Enhanced Osteogenesis, Angiogenesis, and Long-Lasting Antibacterial Effects, Sci. Rep., 2016, 6, p 27374CrossRef C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, and P.K. Chu, Biodegradable Mg-Cu Alloys with Enhanced Osteogenesis, Angiogenesis, and Long-Lasting Antibacterial Effects, Sci. Rep., 2016, 6, p 27374CrossRef
31.
go back to reference X. Yan, P. Wan, L. Tan, M. Zhao, L. Qin, and K. Yang, Corrosion and Biological Performance of Biodegradable Magnesium Alloys Mediated by Low Copper Addition and Processing, Mater. Sci. Eng. A, 2018, 93, p 565–581CrossRef X. Yan, P. Wan, L. Tan, M. Zhao, L. Qin, and K. Yang, Corrosion and Biological Performance of Biodegradable Magnesium Alloys Mediated by Low Copper Addition and Processing, Mater. Sci. Eng. A, 2018, 93, p 565–581CrossRef
32.
go back to reference X. Yan, P. Wan, L. Tan, M. Zhao, C. Shuai, and K. Yang, Influence of Hybrid Extrusion and Solution Treatment on the Microstructure and Degradation Behavior of Mg-0.1Cu Alloy, Mater. Sci. Eng. A, 2018, 229, p 105–117CrossRef X. Yan, P. Wan, L. Tan, M. Zhao, C. Shuai, and K. Yang, Influence of Hybrid Extrusion and Solution Treatment on the Microstructure and Degradation Behavior of Mg-0.1Cu Alloy, Mater. Sci. Eng. A, 2018, 229, p 105–117CrossRef
33.
go back to reference J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747CrossRef
34.
go back to reference H. Okamoto, Comment on Mg-Zn (Magnesium-Zinc), Phase Equilib. Diffus., 1994, 15, p 129–130CrossRef H. Okamoto, Comment on Mg-Zn (Magnesium-Zinc), Phase Equilib. Diffus., 1994, 15, p 129–130CrossRef
35.
go back to reference W. Chen and J. Sun, The Electronic Structure and Mechanical Properties of MgCu2 Laves Phase Compound, Physica B, 2006, 382, p 279–284CrossRef W. Chen and J. Sun, The Electronic Structure and Mechanical Properties of MgCu2 Laves Phase Compound, Physica B, 2006, 382, p 279–284CrossRef
36.
go back to reference B. Kim, S.M. Baek, H.Y. Jeong, J.G. Lee, and S.S. Park, Grain refinement and Reduced Yield Asymmetry of Extruded Mg-5Sn-1Zn Alloy by Al Addition, J. Alloys Compd., 2016, 660, p 304–309CrossRef B. Kim, S.M. Baek, H.Y. Jeong, J.G. Lee, and S.S. Park, Grain refinement and Reduced Yield Asymmetry of Extruded Mg-5Sn-1Zn Alloy by Al Addition, J. Alloys Compd., 2016, 660, p 304–309CrossRef
37.
go back to reference N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25 N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25
38.
go back to reference E.O. Hall, The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation, Proc. Phys. Soc. B., 1951, 64, p 747CrossRef E.O. Hall, The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation, Proc. Phys. Soc. B., 1951, 64, p 747CrossRef
39.
go back to reference G. Mima and Y. Tanaka, Grain Size Dependence of Yield Stress and Flow Stress in the Age-Hardened Magnesium-Zinc Alloy, Trans JIM, 1971, 12, p 317CrossRef G. Mima and Y. Tanaka, Grain Size Dependence of Yield Stress and Flow Stress in the Age-Hardened Magnesium-Zinc Alloy, Trans JIM, 1971, 12, p 317CrossRef
40.
go back to reference M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef
41.
go back to reference Y. Jiang, Y. Chen, and G. Gao, Role of Volume Fraction of Second Phase Particles, Dislocation-Twin and Twin–Twin Interactions in the Reduced Tension-Compression Yield Asymmetry, Mater. Des., 2016, 97, p 131–137CrossRef Y. Jiang, Y. Chen, and G. Gao, Role of Volume Fraction of Second Phase Particles, Dislocation-Twin and Twin–Twin Interactions in the Reduced Tension-Compression Yield Asymmetry, Mater. Des., 2016, 97, p 131–137CrossRef
42.
go back to reference S.M. Yin, C.H. Wang, Y.D. Diao, S.D. Wu, and S.X. Li, Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy, J. Mater. Sci. Technol., 2011, 27, p 29–34CrossRef S.M. Yin, C.H. Wang, Y.D. Diao, S.D. Wu, and S.X. Li, Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy, J. Mater. Sci. Technol., 2011, 27, p 29–34CrossRef
43.
go back to reference J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension-Compression Yield Asymmetry in a Mg-8Al-0.5Zn Alloy via Precipitation, Scr. Mater., 2010, 62, p 301–304CrossRef J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension-Compression Yield Asymmetry in a Mg-8Al-0.5Zn Alloy via Precipitation, Scr. Mater., 2010, 62, p 301–304CrossRef
44.
go back to reference M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Microstructure and Corrosion Behavior of AZ80 Mg Alloy Following Different Extrusion Temperatures, Corros. Sci., 2008, 50, p 1766–1778CrossRef M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Microstructure and Corrosion Behavior of AZ80 Mg Alloy Following Different Extrusion Temperatures, Corros. Sci., 2008, 50, p 1766–1778CrossRef
45.
go back to reference G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55, p 4148–4161CrossRef G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55, p 4148–4161CrossRef
46.
go back to reference T. Zhang, Y. Shao, G. Meng, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53, p 1960–1968CrossRef T. Zhang, Y. Shao, G. Meng, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53, p 1960–1968CrossRef
47.
go back to reference N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 589–594CrossRef N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 589–594CrossRef
Metadata
Title
Influence of Cu Addition on the Microstructure, Mechanical, and Corrosion Properties of Extruded Mg-2%Zn Alloy
Authors
M. Lotfpour
M. Emamy
C. Dehghanian
Publication date
22-05-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04856-0

Other articles of this Issue 5/2020

Journal of Materials Engineering and Performance 5/2020 Go to the issue

Premium Partners