Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2016

02-05-2016

Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

Authors: H. Maleki-Ghaleh, E. Aghaie, A. Nadernezhad, M. Zargarzadeh, A. Khakzad, M. S. Shakeri, Y. Beygi Khosrowshahi, M. H. Siadati

Published in: Journal of Materials Engineering and Performance | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.J. Mothe and C.H. Tator, Advances in Stem Cell Therapy for Spinal Cord Injury, J. Clin. Invest., 2012, 122(11), p 3824–3834CrossRef A.J. Mothe and C.H. Tator, Advances in Stem Cell Therapy for Spinal Cord Injury, J. Clin. Invest., 2012, 122(11), p 3824–3834CrossRef
2.
go back to reference F. Berthiaume, T.J. Maguire, and M.L. Yarmush, Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges, Ann. Rev. Chem. Biomol. Eng., 2011, 2, p 403–430CrossRef F. Berthiaume, T.J. Maguire, and M.L. Yarmush, Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges, Ann. Rev. Chem. Biomol. Eng., 2011, 2, p 403–430CrossRef
3.
go back to reference M. Mimeault and S.K. Batra, Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies, Stem Cells, 2006, 24, p 2319–2345CrossRef M. Mimeault and S.K. Batra, Concise Review: Recent Advances on the Significance of Stem Cells in Tissue Regeneration and Cancer Therapies, Stem Cells, 2006, 24, p 2319–2345CrossRef
4.
go back to reference A.M. Parr, C.H. Tator, and A. Keating, Bone Marrow-Derived Mesenchymal Stromal Cells for the Repair of Central Nervous System Injury, Bone Marrow Transpl., 2007, 40, p 609–619CrossRef A.M. Parr, C.H. Tator, and A. Keating, Bone Marrow-Derived Mesenchymal Stromal Cells for the Repair of Central Nervous System Injury, Bone Marrow Transpl., 2007, 40, p 609–619CrossRef
5.
go back to reference K.E. Hatzistergos, H. Quevedo, B.N. Oskouei, H. Qinghua, G.S. Feigenbaum, I.S. Margitich, R. Mazhari et al., Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation Novelty and Significance, Circ. Res., 2010, 107, p 913–922CrossRef K.E. Hatzistergos, H. Quevedo, B.N. Oskouei, H. Qinghua, G.S. Feigenbaum, I.S. Margitich, R. Mazhari et al., Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation Novelty and Significance, Circ. Res., 2010, 107, p 913–922CrossRef
6.
go back to reference M. Körbling and Z. Estrov, Adult Stem Cells for Tissue Repair—A New Therapeutic Concept, N. Engl. J. Med., 2003, 349, p 570–582CrossRef M. Körbling and Z. Estrov, Adult Stem Cells for Tissue Repair—A New Therapeutic Concept, N. Engl. J. Med., 2003, 349, p 570–582CrossRef
7.
go back to reference C.P. Hodgkinson, J.A. Gomez, M. Mirotsou, and V.J. Dzau, Genetic Engineering of Mesenchymal Stem Cells and its Application in Human Disease Therapy, Hum. Gene Ther., 2010, 21, p 1513–1526CrossRef C.P. Hodgkinson, J.A. Gomez, M. Mirotsou, and V.J. Dzau, Genetic Engineering of Mesenchymal Stem Cells and its Application in Human Disease Therapy, Hum. Gene Ther., 2010, 21, p 1513–1526CrossRef
8.
go back to reference S. Polgar, L. Karimi, and M.E. Morris, Stem Cell Therapy for Parkinson’ s disease: Are Double-Blind Randomized Control Trials the Best Design for Quantifying Therapy Outcomes?, J. Neurol. Neurophysiol., 2013, 4, p 170. doi:10.4172/2155-9562.1000170 S. Polgar, L. Karimi, and M.E. Morris, Stem Cell Therapy for Parkinson’ s disease: Are Double-Blind Randomized Control Trials the Best Design for Quantifying Therapy Outcomes?, J. Neurol. Neurophysiol., 2013, 4, p 170. doi:10.​4172/​2155-9562.​1000170
9.
go back to reference I. García-Gómez, G. Elvira, A.G. Zapata, M.L. Lamana, M. Ramírez, J. García Castro, M. García Arranz, A. Vicente, J. Bueren, and D. García-Olmo, Mesenchymal Stem Cells: Biological Properties and Clinical Applications, Expert Opin. Biol. Ther., 2010, 10(10), p 1453–1468CrossRef I. García-Gómez, G. Elvira, A.G. Zapata, M.L. Lamana, M. Ramírez, J. García Castro, M. García Arranz, A. Vicente, J. Bueren, and D. García-Olmo, Mesenchymal Stem Cells: Biological Properties and Clinical Applications, Expert Opin. Biol. Ther., 2010, 10(10), p 1453–1468CrossRef
10.
go back to reference L. Mazzini, K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, N. Nasuelli, G.D. Oggioni, L. Testa, and F. Fagioli, Stem Cell Treatment in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2008, 265, p 78–83CrossRef L. Mazzini, K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, N. Nasuelli, G.D. Oggioni, L. Testa, and F. Fagioli, Stem Cell Treatment in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2008, 265, p 78–83CrossRef
11.
go back to reference Y. Ikada, Challenges in Tissue Engineering, J. R. Soc. Interface, 2006, 3, p 589–601CrossRef Y. Ikada, Challenges in Tissue Engineering, J. R. Soc. Interface, 2006, 3, p 589–601CrossRef
12.
go back to reference A.D. Ebert and C.N. Svendsen, Human Stem Cells and Drug Screening: Opportunities and Challenges, Nat. Rev. Drug Discov., 2010, 9, p 367–372CrossRef A.D. Ebert and C.N. Svendsen, Human Stem Cells and Drug Screening: Opportunities and Challenges, Nat. Rev. Drug Discov., 2010, 9, p 367–372CrossRef
13.
go back to reference Y. Ikada, Tissue Engineering: Fundamentals and Applications, Vol 46, Elsevier, San Diego, 2011 Y. Ikada, Tissue Engineering: Fundamentals and Applications, Vol 46, Elsevier, San Diego, 2011
14.
go back to reference H. Patil, I.S. Chandel, A.K. Rastogi, and P. Srivastava, Studies on a Novel Bioreactor Design for Chondrocyte Culture, International Journal of Tissue Engineering, 2013, 2013, p 1–7CrossRef H. Patil, I.S. Chandel, A.K. Rastogi, and P. Srivastava, Studies on a Novel Bioreactor Design for Chondrocyte Culture, International Journal of Tissue Engineering, 2013, 2013, p 1–7CrossRef
15.
go back to reference J.E. Hambor, Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing, BioProcess Int., 2012, 10, p 22–33 J.E. Hambor, Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing, BioProcess Int., 2012, 10, p 22–33
16.
go back to reference M. Serra, C. Brito, C. Correia, and P.M. Alves, Process Engineering of Human Pluripotent Stem Cells for Clinical Application, Trends Biotechnol., 2012, 30, p 350–359CrossRef M. Serra, C. Brito, C. Correia, and P.M. Alves, Process Engineering of Human Pluripotent Stem Cells for Clinical Application, Trends Biotechnol., 2012, 30, p 350–359CrossRef
17.
go back to reference A.C. Allori, A.M. Sailon, and S.M. Warren, Biological Basis of Bone Formation, Remodeling, and Repair—Part I: Biochemical Signaling Molecules, Tissue Eng. B, 2008, 14, p 259–273CrossRef A.C. Allori, A.M. Sailon, and S.M. Warren, Biological Basis of Bone Formation, Remodeling, and Repair—Part I: Biochemical Signaling Molecules, Tissue Eng. B, 2008, 14, p 259–273CrossRef
18.
go back to reference G.M. Harbers and D.W. Grainger, Cell-Material Interactions: Fundamental Design Issues for Tissue Engineering and Clinical Considerations. An Introduction to Biomaterials, Taylor Francis Group, Boca Raton, FL, 2006, p 15–45 G.M. Harbers and D.W. Grainger, Cell-Material Interactions: Fundamental Design Issues for Tissue Engineering and Clinical Considerations. An Introduction to Biomaterials, Taylor Francis Group, Boca Raton, FL, 2006, p 15–45
19.
go back to reference G. Huang, L. Wang, S.Q. Wang, Y. Han, W. Jinhui, Q. Zhang, X. Feng, and T.J. Lu, Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels, Biofabrication, 2012, 4, p 042001CrossRef G. Huang, L. Wang, S.Q. Wang, Y. Han, W. Jinhui, Q. Zhang, X. Feng, and T.J. Lu, Engineering Three-Dimensional Cell Mechanical Microenvironment with Hydrogels, Biofabrication, 2012, 4, p 042001CrossRef
21.
go back to reference T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zou, A. Flyvbjerg et al., Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds, Biomaterials, 2007, 28(6), p 1036–1047CrossRef T. Mygind, M. Stiehler, A. Baatrup, H. Li, X. Zou, A. Flyvbjerg et al., Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds, Biomaterials, 2007, 28(6), p 1036–1047CrossRef
22.
go back to reference D. Turhani, E. Watzinger, M. Weissenbock, B. Cvikl, D. Thurnher, G. Wittwer et al., Analysis of Cell-Seeded 3-Dimensional Bone Constructs Manufactured In Vitro with Hydroxyapatite Granules Obtained from Red Algae, J. Oral Maxillofac. Surg., 2005, 63, p 673–681CrossRef D. Turhani, E. Watzinger, M. Weissenbock, B. Cvikl, D. Thurnher, G. Wittwer et al., Analysis of Cell-Seeded 3-Dimensional Bone Constructs Manufactured In Vitro with Hydroxyapatite Granules Obtained from Red Algae, J. Oral Maxillofac. Surg., 2005, 63, p 673–681CrossRef
23.
go back to reference F.H. Liu, Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering, J. Mater. Eng. Perform., 2014, 23, p 3762–3769CrossRef F.H. Liu, Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering, J. Mater. Eng. Perform., 2014, 23, p 3762–3769CrossRef
24.
go back to reference J.G. Ocampo, M.E. Jaramillo, D.E. Sierra, and C.O. Orozco, Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration, J. Mater. Eng. Perform., 2016, 25, p 431–442CrossRef J.G. Ocampo, M.E. Jaramillo, D.E. Sierra, and C.O. Orozco, Suspension Rheology, Porosity and Mechanical Strength of Porous Hydroxyapatite Obtained by Gel-casting and Infiltration, J. Mater. Eng. Perform., 2016, 25, p 431–442CrossRef
25.
go back to reference F. Bistolfi, Radiazioni non ionizzanti, ordine, disordine e biostrutture, Minerva Medica, Torino, 1989, p 209–246 F. Bistolfi, Radiazioni non ionizzanti, ordine, disordine e biostrutture, Minerva Medica, Torino, 1989, p 209–246
26.
go back to reference E. Neumann, Membrane Electroporation: Toward a Molecular Mechanism. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, Bielefeld, 1992 E. Neumann, Membrane Electroporation: Toward a Molecular Mechanism. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, Bielefeld, 1992
27.
go back to reference Y. Mouneimne, Electroinsertion of Proteins into Membranes: A Novel Approach to the Study of Membrane Receptors, Harvard University, USA. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, San Francisco, 1992 Y. Mouneimne, Electroinsertion of Proteins into Membranes: A Novel Approach to the Study of Membrane Receptors, Harvard University, USA. Electricity and Magnetism in Biology and Medicine, University of Bielefeld, San Francisco, 1992
28.
go back to reference C.E. Lindgren, Capturing the Aura Integrating Science, Technology and Metaphysics, Motilal Banarsidass Publishe, New Delhi, 2008 C.E. Lindgren, Capturing the Aura Integrating Science, Technology and Metaphysics, Motilal Banarsidass Publishe, New Delhi, 2008
29.
go back to reference N. Dekhtyar, N. Polyaka, R. Sammons, 14th Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20, Springer, Berlin, 2008 N. Dekhtyar, N. Polyaka, R. Sammons, 14th Baltic Conference on Biomedical Engineering and Medical Physics, Vol. 20, Springer, Berlin, 2008
30.
go back to reference D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. . Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6, p 1549–1554CrossRef D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. . Bastida-Hidalgo, and S.H. Cartmell, Polarization of Hydroxyapatite: Influence on Osteoblast Cell Proliferation, Acta Biomater., 2010, 6, p 1549–1554CrossRef
31.
go back to reference S. Bodhak, S. Bose, and A. Bandyopadhyay, Bone Cell-Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31, p 755–761CrossRef S. Bodhak, S. Bose, and A. Bandyopadhyay, Bone Cell-Material Interactions on Metal-Ion Doped Polarized Hydroxyapatite, Mater. Sci. Eng., C, 2011, 31, p 755–761CrossRef
32.
go back to reference W.R. Adey, Electromagnetics in Biology and Medicine, Modern Radio Science, H. Matsumoto, Ed., Oxford University Press, Oxford, 1993, p 245–277 W.R. Adey, Electromagnetics in Biology and Medicine, Modern Radio Science, H. Matsumoto, Ed., Oxford University Press, Oxford, 1993, p 245–277
33.
go back to reference T.Y. Tsong, Deciphering the Language of Cells, Trends Biochem. Sci., 1989, 14, p 89–92CrossRef T.Y. Tsong, Deciphering the Language of Cells, Trends Biochem. Sci., 1989, 14, p 89–92CrossRef
34.
go back to reference Z.J. Sienkiewicz, N.A. Cridland, C.I. Kowalczuk, and R.D. Saunders, Biological Effects of Electromagnetic Fields and Radiation, The Review of Radio Science 1990–1992, M.R. Stone, Ed., Oxford Science Publications, Oxford, 1993, p 737–770 Z.J. Sienkiewicz, N.A. Cridland, C.I. Kowalczuk, and R.D. Saunders, Biological Effects of Electromagnetic Fields and Radiation, The Review of Radio Science 1990–1992, M.R. Stone, Ed., Oxford Science Publications, Oxford, 1993, p 737–770
35.
go back to reference A. Kodama, N. Kamei, G. Kamei, W. Kongcharoensombat, S. Ohkawa, A. Nakabayashi, and M. Ochi, In Vivo Bioluminescence Imaging of Transplanted Bone Marrow Mesenchymal Stromal Cells Using a Magnetic Delivery System in a Rat Fracture Model, Br. J. Bone Joint Surg., 2012, 94, p 998–1006CrossRef A. Kodama, N. Kamei, G. Kamei, W. Kongcharoensombat, S. Ohkawa, A. Nakabayashi, and M. Ochi, In Vivo Bioluminescence Imaging of Transplanted Bone Marrow Mesenchymal Stromal Cells Using a Magnetic Delivery System in a Rat Fracture Model, Br. J. Bone Joint Surg., 2012, 94, p 998–1006CrossRef
36.
go back to reference J.I. Jacobson, R. Gorman, W.S. Yamanashi, B.B. Saxena, and L. Clayton, Low-Amplitude, Extremely Low Frequency Magnetic Fields for the Treatment of Osteoarthritic Knees: A Double-Blind Clinical Study, Altern. Ther. Health Med., 2001, 7(5), p 54–64 J.I. Jacobson, R. Gorman, W.S. Yamanashi, B.B. Saxena, and L. Clayton, Low-Amplitude, Extremely Low Frequency Magnetic Fields for the Treatment of Osteoarthritic Knees: A Double-Blind Clinical Study, Altern. Ther. Health Med., 2001, 7(5), p 54–64
37.
go back to reference R. Zboril, M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater., 2002, 14(3), p 969–982CrossRef R. Zboril, M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater., 2002, 14(3), p 969–982CrossRef
38.
go back to reference H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, and J.A. Switzer, Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine, J. Mater. Res., 2006, 21(1), p 293–301CrossRef H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, and J.A. Switzer, Electrochemical Deposition and Characterization of Fe3O4 Films Produced by the Reduction of Fe(III)-Triethanolamine, J. Mater. Res., 2006, 21(1), p 293–301CrossRef
39.
go back to reference M.E. Bahrololoom, M. Javidi, S. Javadpour, and J. Ma, Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash, J. Ceram. Process. Res., 2009, 10, p 129–138 M.E. Bahrololoom, M. Javidi, S. Javadpour, and J. Ma, Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash, J. Ceram. Process. Res., 2009, 10, p 129–138
40.
go back to reference K. Haberko, M.M. Bucko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zar, ebski, Natural Hydroxyapatite—Its Behaviour During Heat Treatment, J. Eur. Ceram. Soc., 2006, 26, p 537–542CrossRef K. Haberko, M.M. Bucko, J. Brzezińska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zar, ebski, Natural Hydroxyapatite—Its Behaviour During Heat Treatment, J. Eur. Ceram. Soc., 2006, 26, p 537–542CrossRef
41.
go back to reference Y. Li, C.T. Nam, and C.P. Ooi, Iron (III) and Manganese (II) Substituted Hydroxyapatite Nanoparticles: Characterization and Cytotoxicity Analysis, J. Phys., 2009, 187(1), p 012024 Y. Li, C.T. Nam, and C.P. Ooi, Iron (III) and Manganese (II) Substituted Hydroxyapatite Nanoparticles: Characterization and Cytotoxicity Analysis, J. Phys., 2009, 187(1), p 012024
42.
go back to reference R.P. Franke and F. Jung, Interaction of Blood Components and Blood Cells with Body Foreign, Surfaces, Ser. Biomech., 2012, 27, p 51–58 R.P. Franke and F. Jung, Interaction of Blood Components and Blood Cells with Body Foreign, Surfaces, Ser. Biomech., 2012, 27, p 51–58
43.
go back to reference Genel Histoloji Erkocak, Dag Okan, Yay ltd. sti, Istanbul, 1983 Genel Histoloji Erkocak, Dag Okan, Yay ltd. sti, Istanbul, 1983
44.
go back to reference R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds, Biotechnol. Bioeng., 2000, 67, p 344–353CrossRef R. Glicklis, L. Shapiro, R. Agbaria, J.C. Merchuk, and S. Cohen, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds, Biotechnol. Bioeng., 2000, 67, p 344–353CrossRef
45.
go back to reference E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (E pzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637CrossRef E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (E pzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637CrossRef
46.
go back to reference M. Kosmulski, pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2006, 298, p 730–741CrossRef M. Kosmulski, pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2006, 298, p 730–741CrossRef
47.
go back to reference M. Kosmulski, The pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2011, 353, p 1–15CrossRef M. Kosmulski, The pH-Dependent Surface Charging and Points of Zero Charge, J. Colloid Interface Sci., 2011, 353, p 1–15CrossRef
48.
go back to reference F. Bistolfi, Campi magnetici in medicina, Ed. Minerva Medica, Torino, 1993 F. Bistolfi, Campi magnetici in medicina, Ed. Minerva Medica, Torino, 1993
49.
go back to reference C.W. Smith and S. Best, Electromagnetic Man, J.M. Dent & Sonns, London, 1989 C.W. Smith and S. Best, Electromagnetic Man, J.M. Dent & Sonns, London, 1989
50.
go back to reference F. Bistolfi, , Radiazioni non ionizzanti, ordine, disordine e biostruture, Ed. Minerva Medica, Torino, 1989 F. Bistolfi, , Radiazioni non ionizzanti, ordine, disordine e biostruture, Ed. Minerva Medica, Torino, 1989
51.
go back to reference M. Cifra, J.Z. Fields, and A. Farhadi, Electromagnetic Cellular Interactions, Prog. Biophys. Mol. Biol., 2011, 105, p 223–246CrossRef M. Cifra, J.Z. Fields, and A. Farhadi, Electromagnetic Cellular Interactions, Prog. Biophys. Mol. Biol., 2011, 105, p 223–246CrossRef
52.
go back to reference H. Fröhlich, The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes, Proc. Natl. Acad. Sci., 1975, 72, p 4211–4215CrossRef H. Fröhlich, The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes, Proc. Natl. Acad. Sci., 1975, 72, p 4211–4215CrossRef
53.
go back to reference C. Rossi, A. Foletti, A. Magnani, and S. Lamponi, New Perspectives in Cell Communication: Bioelectromagnetic Interactions, Semin. Cancer Biol., 2011, 21, p 207–214CrossRef C. Rossi, A. Foletti, A. Magnani, and S. Lamponi, New Perspectives in Cell Communication: Bioelectromagnetic Interactions, Semin. Cancer Biol., 2011, 21, p 207–214CrossRef
54.
go back to reference S. Seckiner Gorgun, Studies on the Interaction Between Electromagnetic Fields and Living Matter Neoplastic Cellular Culture, Front. Prospect., 1998, 7(2), p 1–21 S. Seckiner Gorgun, Studies on the Interaction Between Electromagnetic Fields and Living Matter Neoplastic Cellular Culture, Front. Prospect., 1998, 7(2), p 1–21
55.
go back to reference L.-Y. Sun, D.-K. Hsieh, Y. Tzai-Chiu, H.-T. Chiu, L. Sheng-Fen, G.-H. Luo, T.K. Kuo, O.K. Lee, and T.W. Chiou, Effect of Pulsed Electromagnetic Field on the Proliferation and Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells, Bioelectromagnetics, 2009, 30, p 251–260CrossRef L.-Y. Sun, D.-K. Hsieh, Y. Tzai-Chiu, H.-T. Chiu, L. Sheng-Fen, G.-H. Luo, T.K. Kuo, O.K. Lee, and T.W. Chiou, Effect of Pulsed Electromagnetic Field on the Proliferation and Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells, Bioelectromagnetics, 2009, 30, p 251–260CrossRef
56.
go back to reference M.A. Omar, Elementary Solid State Physics, Pearson Education India, New Delhi, 1999 M.A. Omar, Elementary Solid State Physics, Pearson Education India, New Delhi, 1999
57.
go back to reference W. Adey, Biological Effects of Electromagnetic Fields, J. Cell. Biochem., 1993, 51, p 410–416CrossRef W. Adey, Biological Effects of Electromagnetic Fields, J. Cell. Biochem., 1993, 51, p 410–416CrossRef
Metadata
Title
Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells
Authors
H. Maleki-Ghaleh
E. Aghaie
A. Nadernezhad
M. Zargarzadeh
A. Khakzad
M. S. Shakeri
Y. Beygi Khosrowshahi
M. H. Siadati
Publication date
02-05-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2086-4

Other articles of this Issue 6/2016

Journal of Materials Engineering and Performance 6/2016 Go to the issue

Premium Partners