Skip to main content
Top
Published in: Journal of Iron and Steel Research International 11/2020

14-10-2020 | Original Paper

Influence of pass reduction ratio on microstructure and properties of 2205/Q235B clad steel plate

Authors: Feng-qiang Xiao, Dong-po Wang, Wen-bin Hu, Lei Cui, Zhi-ming Gao, Lan-ju Zhou

Published in: Journal of Iron and Steel Research International | Issue 11/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

2205/Q235B clad steel plates were fabricated using a thermal simulator. The metallographic microscope, scanning electron microscope, energy-dispersive spectrometer, shear test, electrochemical corrosion test and acid immersion test were used to study the influence of the pass reduction ratio on the microstructure and properties of 2205/Q235B clad steel plate. The results show that the clad steel plates had a good bonding surface when the pass reduction ratios were between 16.3% and 36.0%. There existed the mutual diffusion effect of elements near the bonding surface, which caused the long austenite strip on the side of 2205 stainless steel and the decarburization layer on the side of Q235B low-carbon steel. The transformation of δ ferrite to γ austenite and the generation of the decarburization layer were promoted because of the lower pass reduction ratio. The corrosion resistance of 2205 duplex-phases stainless steel worsened by the decrease in δ ferrite content. The increase in the decarburization layer thickness made the shear strength of the clad steel plates reduce from 453 to 390 MPa. The potential of the decarburization layer was lower than that of 2205 stainless steel and Q235B low-carbon steel, which was easily corroded in the corrosive medium.
Literature
[1]
go back to reference T. Niendorf, T. Wegener, Z.M. Li, D. Raabe, Scripta Mater. 143 (2018) 63–67.CrossRef T. Niendorf, T. Wegener, Z.M. Li, D. Raabe, Scripta Mater. 143 (2018) 63–67.CrossRef
[2]
go back to reference W.U. Wei, Baosteel Technol. Res. 11 (2018) No. 2, 25–32. W.U. Wei, Baosteel Technol. Res. 11 (2018) No. 2, 25–32.
[3]
go back to reference F. Hejripour, F. Binesh, M. Hebel, D.K. Aidun, J. Mater. Process. Technol. 272 (2019) 58–71.CrossRef F. Hejripour, F. Binesh, M. Hebel, D.K. Aidun, J. Mater. Process. Technol. 272 (2019) 58–71.CrossRef
[4]
[5]
go back to reference B.X. Liu, S. Wang, W. Fang, J.L. Ma, F.X. Yin, J.N. He, J.H. Feng, C.X. Chen, Mater. Chem. Phys. 216 (2018) 460–467.CrossRef B.X. Liu, S. Wang, W. Fang, J.L. Ma, F.X. Yin, J.N. He, J.H. Feng, C.X. Chen, Mater. Chem. Phys. 216 (2018) 460–467.CrossRef
[6]
go back to reference J. Charles, P. Chemelle, World Iron Steel 6 (2012) No. 1, 46–57. J. Charles, P. Chemelle, World Iron Steel 6 (2012) No. 1, 46–57.
[8]
go back to reference D.H. Yang, Z.A. Luo, G.M. Xie, M.K. Wang, R.D.K. Misra, J. Iron Steel Res. Int. 25 (2018) 72–80.CrossRef D.H. Yang, Z.A. Luo, G.M. Xie, M.K. Wang, R.D.K. Misra, J. Iron Steel Res. Int. 25 (2018) 72–80.CrossRef
[9]
go back to reference J. Jiang, H. Ding, Z.A. Luo, G.M. Xie, J. Iron Steel Res. Int. 25 (2018) 732–738.CrossRef J. Jiang, H. Ding, Z.A. Luo, G.M. Xie, J. Iron Steel Res. Int. 25 (2018) 732–738.CrossRef
[10]
go back to reference Y.A. Jing, Y. Qin, X.M. Zang, Y.H. Li, J. Mater. Process. Technol. 214 (2014) 1686–1695.CrossRef Y.A. Jing, Y. Qin, X.M. Zang, Y.H. Li, J. Mater. Process. Technol. 214 (2014) 1686–1695.CrossRef
[11]
go back to reference H.J. Niu, C.N. Li, D. Liu, Q. Wang, D.Y. Fu, Wide and Heavy Plate 24 (2018) No. 4, 15–18. H.J. Niu, C.N. Li, D. Liu, Q. Wang, D.Y. Fu, Wide and Heavy Plate 24 (2018) No. 4, 15–18.
[12]
go back to reference Z.A. Luo, G.M. Xie, K. Zhao, J. Northeast. Uni. (Nat. Sci.) 33 (2012) 1431–1435. Z.A. Luo, G.M. Xie, K. Zhao, J. Northeast. Uni. (Nat. Sci.) 33 (2012) 1431–1435.
[13]
go back to reference Z.P. Wang, H.M. Zhang, K.J. Fu, J.B. Jiang, F.F. Liu, J.Y. Wang, Trans. Mater. Heat. Treatment 37 (2016) No. S, 44–49. Z.P. Wang, H.M. Zhang, K.J. Fu, J.B. Jiang, F.F. Liu, J.Y. Wang, Trans. Mater. Heat. Treatment 37 (2016) No. S, 44–49.
[14]
go back to reference M. Yan, J.N. Sun, H.G. Huang, L. Chen, K. Dong, Z.Y. Chen, J. Iron Steel Res. Int. 25 (2018) 1113–1122.CrossRef M. Yan, J.N. Sun, H.G. Huang, L. Chen, K. Dong, Z.Y. Chen, J. Iron Steel Res. Int. 25 (2018) 1113–1122.CrossRef
[15]
go back to reference C.H. Ma, Y. Li, L.X. Zhang, Y. Sun, J.L. Sun, Ceram. Int. 45 (2019) 11275–11280.CrossRef C.H. Ma, Y. Li, L.X. Zhang, Y. Sun, J.L. Sun, Ceram. Int. 45 (2019) 11275–11280.CrossRef
[16]
go back to reference F. Zhao, M. Wu, B. Jiang, C.L. Zhang, J.X. Xie, Y.Z. Liu, Mater. Charact. 140 (2018) 217–224.CrossRef F. Zhao, M. Wu, B. Jiang, C.L. Zhang, J.X. Xie, Y.Z. Liu, Mater. Charact. 140 (2018) 217–224.CrossRef
[17]
go back to reference M. Pirnat, P. Mrvar, J. Medved, Mater. Technol. 45 (2011) 529–535. M. Pirnat, P. Mrvar, J. Medved, Mater. Technol. 45 (2011) 529–535.
[18]
go back to reference N.W. Dai, J. Wu, L.C. Zhang, L.Q. Yin, Y.Y. Yang, Y.M. Jiang, J. Li, Construct. Build. Mater. 202 (2019) 877–890.CrossRef N.W. Dai, J. Wu, L.C. Zhang, L.Q. Yin, Y.Y. Yang, Y.M. Jiang, J. Li, Construct. Build. Mater. 202 (2019) 877–890.CrossRef
[19]
[20]
go back to reference L.L. Miao, Y. Zhang, G.D. Wang, Z.Y. Wang, J.F. Wu, Metall. Anal. 30 (2010) No. 9, 6–13. L.L. Miao, Y. Zhang, G.D. Wang, Z.Y. Wang, J.F. Wu, Metall. Anal. 30 (2010) No. 9, 6–13.
Metadata
Title
Influence of pass reduction ratio on microstructure and properties of 2205/Q235B clad steel plate
Authors
Feng-qiang Xiao
Dong-po Wang
Wen-bin Hu
Lei Cui
Zhi-ming Gao
Lan-ju Zhou
Publication date
14-10-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 11/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00496-9

Other articles of this Issue 11/2020

Journal of Iron and Steel Research International 11/2020 Go to the issue

Premium Partners