Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2022

23-02-2022 | Technical Article

Influence of Salt-Bath Nitrocarburizing on the Electrochemical Corrosion Properties of Stainless Steels and Nickel-Based Alloys in 3.5-wt.% Sodium Chloride Solution

Authors: Virendra Singh, Manuel Marya

Published in: Journal of Materials Engineering and Performance | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stainless steels and nickel-based alloys, despite adequate corrosion resistance for general oilfield services, are restricted in abrasive and fretting wear by their surface hardness. Nitrocarburizing is well known to cause surface hardening, but its effect on corrosion is still not well established on high-chromium iron and nickel-based alloys. Salt-bath nitrocarburizing has been applied on five stainless steels (UNS S41000, UNS S41425, UNS S17400, UNS S30400, and UNS S31600) and four nickel-based alloys (UNS N09925, UNS N09935, UNS N07718, and UNS N07716) to explore the effects of alloy compositions on nitrocarburizing compounds, case depths, and corrosion behaviors in a light 3.5 wt.% sodium chloride brine. For all selected alloys, the nitrocarburized surfaces were mainly characterized by optical and scanning electron microscopy and x-ray diffraction. In addition to pit quantification measurements, corrosion resistance was evaluated by cyclic potentiodynamic polarization testing at ambient temperature on both un-nitrocarburized and nitrocarburized alloys, the latter simultaneously processed in a single molten salt bath. Compared to the nickel-based alloys, the nitrocarburized stainless steels possess thicker and harder compound layers of chromium nitrides, with an iron (III) oxide layer on top. Potentiodynamic polarization tests further indicate that nitrocarburizing increases the corrosion resistance of stainless steels at least temporarily. The nickel-based alloys, characterized by thinner nitride layers, were all observed to lose some corrosion resistance, yet remained comparable in pitting resistance than the un-nitrocarburized stainless steels with a minimum PREN of approximately 20. The nitrocarburized nickel-based alloys were consistently found to be free of both iron (III) oxide at the surface and nitrogen enrichment below the compound layer. Carbon was found to cluster below the nitride-rich compound layer, with its contributions in need of further investigations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.L.F. Ajit K. Roy and Beverly Y. Lum, 98157 Stress Corrosion Cracking OF Fe-Ni-Cr-Mo, Ni-Cr-Mo AND Ti Alloys IN 90°C Acidic Brine, Corrosion 98, p. NACE-98157, 1998 D.L.F. Ajit K. Roy and Beverly Y. Lum, 98157 Stress Corrosion Cracking OF Fe-Ni-Cr-Mo, Ni-Cr-Mo AND Ti Alloys IN 90°C Acidic Brine, Corrosion 98, p. NACE-98157, 1998
2.
go back to reference Petroeum and Natural Gas Industries-Materials for Use in H2S Containing Environments in Oil and Gas Production, NACE, MR0175/ISO 15156, 2015 Petroeum and Natural Gas Industries-Materials for Use in H2S Containing Environments in Oil and Gas Production, NACE, MR0175/ISO 15156, 2015
3.
go back to reference V. Singh, and M. Marya, On the Corrosion Resistance of Nitrocarburized and Boronized Nickel-based Alloys, Materials Science & Technology Conference and Exhibition 201 (MST’19), 2019, p. 319–326 V. Singh, and M. Marya, On the Corrosion Resistance of Nitrocarburized and Boronized Nickel-based Alloys, Materials Science & Technology Conference and Exhibition 201 (MST’19), 2019, p. 319–326
4.
go back to reference V.S. Manuel Marya, Y. Chen and H. Liang, On the Friction and Anti-Galling Properties of Coatings and Surface Treatments, Materials Science & Technology Conference and Exhibition 2019, p. 364–371 V.S. Manuel Marya, Y. Chen and H. Liang, On the Friction and Anti-Galling Properties of Coatings and Surface Treatments, Materials Science & Technology Conference and Exhibition 2019, p. 364–371
5.
go back to reference H. Xiang, G. Wu, D. Liu, H. Cao and X. Dong, Effect of Quench Polish Quench Nitriding Temperature on the Microstructure and Wear Resistance of SAF2906 Duplex Stainless Steel, Metals, 2019, 9(8), p 848.CrossRef H. Xiang, G. Wu, D. Liu, H. Cao and X. Dong, Effect of Quench Polish Quench Nitriding Temperature on the Microstructure and Wear Resistance of SAF2906 Duplex Stainless Steel, Metals, 2019, 9(8), p 848.CrossRef
7.
go back to reference G.-J. Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S.-Y. Chen and B.-L. Shen, Surface Microstructure of 316L Austenitic Stainless Steel by the Salt Bath Nitrocarburizing and Post-oxidation Process Known as QPQ, Surf. Coat. Technol., 2008, 202(13), p 2865–2870.CrossRef G.-J. Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S.-Y. Chen and B.-L. Shen, Surface Microstructure of 316L Austenitic Stainless Steel by the Salt Bath Nitrocarburizing and Post-oxidation Process Known as QPQ, Surf. Coat. Technol., 2008, 202(13), p 2865–2870.CrossRef
8.
go back to reference S.P. Brühl, R. Charadia, S. Simison, D.G. Lamas and A. Cabo, Corrosion Behavior of Martensitic and Precipitation Hardening Stainless Steels Treated by Plasma Nitriding, Surf. Coat. Technol., 2010, 204(20), p 3280–3286.CrossRef S.P. Brühl, R. Charadia, S. Simison, D.G. Lamas and A. Cabo, Corrosion Behavior of Martensitic and Precipitation Hardening Stainless Steels Treated by Plasma Nitriding, Surf. Coat. Technol., 2010, 204(20), p 3280–3286.CrossRef
9.
go back to reference L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcântara and P.A.P. Nascente, Study of the S Phase Formed on Plasma-nitrided AISI 316L Stainless Steel, Mater. Sci. Eng., A, 2006, 431(1), p 315–321.CrossRef L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcântara and P.A.P. Nascente, Study of the S Phase Formed on Plasma-nitrided AISI 316L Stainless Steel, Mater. Sci. Eng., A, 2006, 431(1), p 315–321.CrossRef
10.
go back to reference A. Fossati, F. Borgioli, E. Galvanetto and T. Bacci, Corrosion Resistance Properties of Glow-Discharge Nitrided AISI 316L Austenitic Stainless Steel in NaCl Solutions, Corros. Sci., 2006, 48(6), p 1513–1527.CrossRef A. Fossati, F. Borgioli, E. Galvanetto and T. Bacci, Corrosion Resistance Properties of Glow-Discharge Nitrided AISI 316L Austenitic Stainless Steel in NaCl Solutions, Corros. Sci., 2006, 48(6), p 1513–1527.CrossRef
11.
go back to reference L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato and C.R.M. da Silva, Surface Nitriding Influence on the Fatigue Life Behavior of ASTM A743 Steel Type CA6NM, Surf. Coat. Technol., 2013, 232, p 844–850.CrossRef L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato and C.R.M. da Silva, Surface Nitriding Influence on the Fatigue Life Behavior of ASTM A743 Steel Type CA6NM, Surf. Coat. Technol., 2013, 232, p 844–850.CrossRef
12.
go back to reference ASM Handbook, Volume 5: Surface Engineering, 1994 ASM Handbook, Volume 5: Surface Engineering, 1994
13.
go back to reference T. Makishi and K. Nakata, Surface Hardening of Nickel Alloys by Means of Plasma Nitriding, Metall. Mater. Trans. A., 2004, 35(1), p 227–238.CrossRef T. Makishi and K. Nakata, Surface Hardening of Nickel Alloys by Means of Plasma Nitriding, Metall. Mater. Trans. A., 2004, 35(1), p 227–238.CrossRef
14.
go back to reference Y. Sun, Kinetics of Layer Growth During Plasma Nitriding of Nickel Based Alloy Inconel 600, J. Alloy. Compd., 2003, 351(1), p 241–247.CrossRef Y. Sun, Kinetics of Layer Growth During Plasma Nitriding of Nickel Based Alloy Inconel 600, J. Alloy. Compd., 2003, 351(1), p 241–247.CrossRef
15.
go back to reference J. Alphonsa, V.S. Raja and S. Mukherjee, Study of Plasma Nitriding and Nitrocarburizing for Higher Corrosion Resistance and Hardness of 2205 Duplex Stainless Steel, Corros. Sci., 2015, 100, p 121–132.CrossRef J. Alphonsa, V.S. Raja and S. Mukherjee, Study of Plasma Nitriding and Nitrocarburizing for Higher Corrosion Resistance and Hardness of 2205 Duplex Stainless Steel, Corros. Sci., 2015, 100, p 121–132.CrossRef
16.
go back to reference F.M. Arash Maniee and R. Soleimani, Improved Hardness, Wear and Corrosion Resistance of Inconel 718 Treated by Hot Wall Plasma Nitriding, Metals Mater. Int., 2019, 26, p 1664.CrossRef F.M. Arash Maniee and R. Soleimani, Improved Hardness, Wear and Corrosion Resistance of Inconel 718 Treated by Hot Wall Plasma Nitriding, Metals Mater. Int., 2019, 26, p 1664.CrossRef
17.
go back to reference N. Makuch and M. Kulka, Microstructural Characterization and Some Mechanical Properties of Gas-Borided Inconel 600-Alloy, Appl. Surf. Sci., 2014, 314, p 1007–1018.CrossRef N. Makuch and M. Kulka, Microstructural Characterization and Some Mechanical Properties of Gas-Borided Inconel 600-Alloy, Appl. Surf. Sci., 2014, 314, p 1007–1018.CrossRef
18.
go back to reference T. Borowski, A. Brojanowska, M. Kost, H. Garbacz and T. Wierzchoń, Modifying the Properties of the Inconel 625 Nickel Alloy by Glow Discharge Assisted Nitriding, Vacuum, 2009, 83(12), p 1489–1493.CrossRef T. Borowski, A. Brojanowska, M. Kost, H. Garbacz and T. Wierzchoń, Modifying the Properties of the Inconel 625 Nickel Alloy by Glow Discharge Assisted Nitriding, Vacuum, 2009, 83(12), p 1489–1493.CrossRef
19.
go back to reference F.A.P. Fernandes, L.C. Casteletti and J. Gallego, Microstructure of Nitrided and Nitrocarburized Layers Produced on a Superaustenitic STAINLESS Steel, J. Market. Res., 2013, 2(2), p 158–164. F.A.P. Fernandes, L.C. Casteletti and J. Gallego, Microstructure of Nitrided and Nitrocarburized Layers Produced on a Superaustenitic STAINLESS Steel, J. Market. Res., 2013, 2(2), p 158–164.
20.
go back to reference G.-J. Li, J. Wang, Q. Peng, C. Li, Y. Wang and B.-L. Shen, Influence of Salt Bath Nitrocarburizing and Post-oxidation Process on Surface Microstructure Evolution of 17–4PH Stainless Steel, J. Mater. Process. Technol., 2008, 207(1), p 187–192.CrossRef G.-J. Li, J. Wang, Q. Peng, C. Li, Y. Wang and B.-L. Shen, Influence of Salt Bath Nitrocarburizing and Post-oxidation Process on Surface Microstructure Evolution of 17–4PH Stainless Steel, J. Mater. Process. Technol., 2008, 207(1), p 187–192.CrossRef
21.
go back to reference L. Li, J. Wang, J. Yan, L. Duan, X. Li and H. Dong, The Effect of Liquid Nitriding on the Corrosion Resistance of AISI 304 Austenitic Stainless Steel in H2S Environments, Metall. Mater. Trans. A., 2018, 49(12), p 6521–6532.CrossRef L. Li, J. Wang, J. Yan, L. Duan, X. Li and H. Dong, The Effect of Liquid Nitriding on the Corrosion Resistance of AISI 304 Austenitic Stainless Steel in H2S Environments, Metall. Mater. Trans. A., 2018, 49(12), p 6521–6532.CrossRef
22.
go back to reference P. Jacquet, J.B. Coudert and P. Lourdin, How Different Steel Grades React to a Salt Bath Nitrocarburizing and Post-Oxidation Process: Influence of Alloying Elements, Surf. Coat. Technol., 2011, 205(16), p 4064–4067.CrossRef P. Jacquet, J.B. Coudert and P. Lourdin, How Different Steel Grades React to a Salt Bath Nitrocarburizing and Post-Oxidation Process: Influence of Alloying Elements, Surf. Coat. Technol., 2011, 205(16), p 4064–4067.CrossRef
23.
go back to reference J.K.R. Sitek, M. Pisarek, H. Matysiak and K.J. Kurzydlowski, Corrosion Resistance of Inconel 718 Nickel Alloy After Pulsed Plasma Ion Nitriding at the frequency of 30 kHz, Front. Appl. Plasm. Technol., 2011, 4, p 6. J.K.R. Sitek, M. Pisarek, H. Matysiak and K.J. Kurzydlowski, Corrosion Resistance of Inconel 718 Nickel Alloy After Pulsed Plasma Ion Nitriding at the frequency of 30 kHz, Front. Appl. Plasm. Technol., 2011, 4, p 6.
24.
go back to reference K. Venkatesan, C. Subramanian, L.K. Green and K.N. Strafford, Influence of Chromium Content on Corrosion of Plasma-Nitrided Steels, Corrosion, 1997, 53(7), p 507–515.CrossRef K. Venkatesan, C. Subramanian, L.K. Green and K.N. Strafford, Influence of Chromium Content on Corrosion of Plasma-Nitrided Steels, Corrosion, 1997, 53(7), p 507–515.CrossRef
25.
go back to reference Age-hardened Nickel-based Alloys for Oil and Gas Drilling and Production Equipment, 2015, API STD 6ACRA Age-hardened Nickel-based Alloys for Oil and Gas Drilling and Production Equipment, 2015, API STD 6ACRA
26.
go back to reference H.S. Klapper and R.B. Rebak, Assessing the Pitting Corrosion Resistance of Oilfield Nickel Alloys at Elevated Temperatures by Electrochemical Methods, Corrosion, 2017, 73(6), p 666–673.CrossRef H.S. Klapper and R.B. Rebak, Assessing the Pitting Corrosion Resistance of Oilfield Nickel Alloys at Elevated Temperatures by Electrochemical Methods, Corrosion, 2017, 73(6), p 666–673.CrossRef
27.
go back to reference Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, 2020, ASTM, G48 Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, 2020, ASTM, G48
28.
go back to reference Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels and Related Alloys, ASTM G150 Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels and Related Alloys, ASTM G150
29.
go back to reference Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, ASTM G61 - 86, 2018 Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, ASTM G61 - 86, 2018
30.
go back to reference S.H. Elder, F.J. DiSalvo, L. Topor and A. Navrotsky, Thermodynamics of Ternary Nitride Formation by Ammonolysis: Application to Lithium Molybdenum Nitride (LiMoN2), Sodium Tungsten Nitride (Na3WN3), and Sodium Tungsten Oxide Nitride (Na3WO3N), Chem. Mater., 1993, 5(10), p 1545–1553.CrossRef S.H. Elder, F.J. DiSalvo, L. Topor and A. Navrotsky, Thermodynamics of Ternary Nitride Formation by Ammonolysis: Application to Lithium Molybdenum Nitride (LiMoN2), Sodium Tungsten Nitride (Na3WN3), and Sodium Tungsten Oxide Nitride (Na3WO3N), Chem. Mater., 1993, 5(10), p 1545–1553.CrossRef
31.
go back to reference T. Bell and Y. Sun, Low-Temperature Plasma Nitriding and Carburising of Austenitic Stainless Steels, Heat Treatment of metals, 2002, 29, p 8. T. Bell and Y. Sun, Low-Temperature Plasma Nitriding and Carburising of Austenitic Stainless Steels, Heat Treatment of metals, 2002, 29, p 8.
32.
go back to reference J. Yan, J. Wang, Y. Lin, T. Gu, D. Zeng, R. Huang, X. Ji and H. Fan, Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C, J. Mater. Eng. Perform., 2014, 23(4), p 1157–1164.CrossRef J. Yan, J. Wang, Y. Lin, T. Gu, D. Zeng, R. Huang, X. Ji and H. Fan, Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C, J. Mater. Eng. Perform., 2014, 23(4), p 1157–1164.CrossRef
33.
go back to reference M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone and Y. Hirose, Behavior of Carbon in Low Temperature Plasma Nitriding Layer of Austenitic Stainless Steel, Surf. Coat. Technol., 2005, 193(1), p 309–313.CrossRef M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone and Y. Hirose, Behavior of Carbon in Low Temperature Plasma Nitriding Layer of Austenitic Stainless Steel, Surf. Coat. Technol., 2005, 193(1), p 309–313.CrossRef
34.
go back to reference H.J. Spies, 6 - Corrosion behaviour of nitrided, nitrocarburised and carburised steels, Thermochemical Surface Engineering of Steels Woodhead Publishing. E.J. Mittemeijer, M.A.J. Somers Ed., Sawston, 2015 H.J. Spies, 6 - Corrosion behaviour of nitrided, nitrocarburised and carburised steels, Thermochemical Surface Engineering of Steels Woodhead Publishing. E.J. Mittemeijer, M.A.J. Somers Ed., Sawston, 2015
35.
go back to reference M.K. Bosslet, Salzbadnitrieren nach dem Tenifer-QPQ-Verfahren, Durferrit-Technische Mitteilung, Degussa AG, 2001, 2001 M.K. Bosslet, Salzbadnitrieren nach dem Tenifer-QPQ-Verfahren, Durferrit-Technische Mitteilung, Degussa AG, 2001, 2001
36.
go back to reference T. Borowski, K. Kulikowski, B. Adamczyk-Cieślak, K. Rożniatowski, M. Spychalski and M. Tarnowski, Influence of Nitrided and Nitrocarburised Layers on the Functional Properties of Nitrogen-Doped Soft Carbon-Based Coatings Deposited on 316L Steel Under DC Glow-Discharge Conditions, Surf. Coat. Technol., 2020, 392, p 125705.CrossRef T. Borowski, K. Kulikowski, B. Adamczyk-Cieślak, K. Rożniatowski, M. Spychalski and M. Tarnowski, Influence of Nitrided and Nitrocarburised Layers on the Functional Properties of Nitrogen-Doped Soft Carbon-Based Coatings Deposited on 316L Steel Under DC Glow-Discharge Conditions, Surf. Coat. Technol., 2020, 392, p 125705.CrossRef
37.
go back to reference R. Sharghi-Moshtaghin, H. Kahn, Y. Ge, X. Gu, F.J. Martin, P.M. Natishan, R.J. Rayne, G.M. Michal, F. Ernst and A.H. Heuer, Low-Temperature Carburization of the Ni-base Superalloy IN718: Improvements in Surface Hardness and Crevice Corrosion Resistance, Metall. and Mater. Trans. A., 2010, 41(8), p 2022–2032.CrossRef R. Sharghi-Moshtaghin, H. Kahn, Y. Ge, X. Gu, F.J. Martin, P.M. Natishan, R.J. Rayne, G.M. Michal, F. Ernst and A.H. Heuer, Low-Temperature Carburization of the Ni-base Superalloy IN718: Improvements in Surface Hardness and Crevice Corrosion Resistance, Metall. and Mater. Trans. A., 2010, 41(8), p 2022–2032.CrossRef
38.
go back to reference C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, C.J.M. de Siqueira and M. Ueda, Mechanical and Tribological Properties of AISI 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 2007, 257(1), p 732–736.CrossRef C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, C.J.M. de Siqueira and M. Ueda, Mechanical and Tribological Properties of AISI 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 2007, 257(1), p 732–736.CrossRef
39.
go back to reference T. Borowski, Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising, Materials, 2021, 14(12), p 3320.CrossRef T. Borowski, Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising, Materials, 2021, 14(12), p 3320.CrossRef
40.
go back to reference H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ Int., 1996, 36(7), p 777–786.CrossRef H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ Int., 1996, 36(7), p 777–786.CrossRef
41.
go back to reference M. Marya, A Comparison of the Pitting and Crevice Corrosion of Directional Drilling Alloys With Oilfield Production Alloys, Corrosion-2020, p. NACE-14432, 2020 M. Marya, A Comparison of the Pitting and Crevice Corrosion of Directional Drilling Alloys With Oilfield Production Alloys, Corrosion-2020, p. NACE-14432, 2020
42.
go back to reference M.F. Yan and R.L. Liu, Influence of Process Time on Microstructure and Properties of 17–4PH Steel Plasma Nitrocarburized with Rare Earths Addition at Low Temperature, Appl. Surf. Sci., 2010, 256(20), p 6065–6071.CrossRef M.F. Yan and R.L. Liu, Influence of Process Time on Microstructure and Properties of 17–4PH Steel Plasma Nitrocarburized with Rare Earths Addition at Low Temperature, Appl. Surf. Sci., 2010, 256(20), p 6065–6071.CrossRef
Metadata
Title
Influence of Salt-Bath Nitrocarburizing on the Electrochemical Corrosion Properties of Stainless Steels and Nickel-Based Alloys in 3.5-wt.% Sodium Chloride Solution
Authors
Virendra Singh
Manuel Marya
Publication date
23-02-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06707-6

Other articles of this Issue 8/2022

Journal of Materials Engineering and Performance 8/2022 Go to the issue

Premium Partners