Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Influence of Secondary Quasicrystalline I-Phase Precipitates on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy

Authors: A. V. Mikhaylovskaya, A. A. Kishchik, N. Yu. Tabachkova, A. S. Prosviryakov, A. G. Mochugovskiy

Published in: Physics of Metals and Metallography | Issue 5/2022

Login to get access
share
SHARE

Abstract—

The parameters of the dispersoids precipitated during low-temperature (at 360°C) and high-temperature (at 450°C) homogenization annealing of the Al–4.9Mg–1.2Mn alloy (Alnovi-U type) ingot have been investigated. The effect of homogenization regime upon the subsequent thermomechanical treatment has been studied on the parameters of grain structure and mechanical properties at room temperature. Low-temperature annealing provided a high number density of I-phase dispersoids with a quasi-crystalline structure and an average size of 35 ± 5 nm. The dispersoids have retained their size and morphology after thermomechanical treatment. Al6Mn-phase dispersoids of a platelate shape with an average longitudinal size of 130 ± 10 nm have precipitated during high-temperature annealing. Precipitation-hardening and dislocation strengthening mechanisms facilitated by I-phase dispersoids during low-temperature annealing of the ingot are responsible for a 40 MPa increase in the yield strength of the alloy as compared to that achieved by conventional high-temperature annealing.
Literature
1.
go back to reference V. S. Zolotorevskii and N. A. Belov, Metal Science of Cast Aluminum Alloys (MISIS, Moscow, 2005) [in Russian]. V. S. Zolotorevskii and N. A. Belov, Metal Science of Cast Aluminum Alloys (MISIS, Moscow, 2005) [in Russian].
2.
go back to reference A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018). CrossRef A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018). CrossRef
3.
go back to reference C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, No. 16, 4803–4814 (2003). CrossRef C. B. Fuller, D. N. Seidman, and D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures,” Acta Mater. 51, No. 16, 4803–4814 (2003). CrossRef
4.
go back to reference M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, No. 23, 7814–7823 (2006). CrossRef M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Nanoscale precipitation and mechanical properties of Al–0.06 at % Sc alloys microalloyed with Yb or Gd,” J. Mater. Sci. 41, No. 23, 7814–7823 (2006). CrossRef
5.
go back to reference A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Y. Zadorozhnyy, N. Y. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016). CrossRef A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Y. Zadorozhnyy, N. Y. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg – TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016). CrossRef
6.
go back to reference D. Tsivoulas, P. B. Prangnell, C. Sigli, and B. Bès, “Effects of Combined Zr and Mn additions on dispersoid formation and recrystallisation behaviour of AA2198 sheet,” Adv. Mater. Res. 89–91, 568–573 (2010). CrossRef D. Tsivoulas, P. B. Prangnell, C. Sigli, and B. Bès, “Effects of Combined Zr and Mn additions on dispersoid formation and recrystallisation behaviour of AA2198 sheet,” Adv. Mater. Res. 89–91, 568–573 (2010). CrossRef
7.
go back to reference P. Yang, O. Engler, and H.-J. Klaar, “Orientation relationship between Al 6Mn precipitates and the Al matrix during continuous recrystallization in Al–1.3% Mn,” J. Appl. Crystallogr. 32, No. 6, 1105–1118 (1999). CrossRef P. Yang, O. Engler, and H.-J. Klaar, “Orientation relationship between Al 6Mn precipitates and the Al matrix during continuous recrystallization in Al–1.3% Mn,” J. Appl. Crystallogr. 32, No. 6, 1105–1118 (1999). CrossRef
8.
go back to reference Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al 6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater. 60, No. 17, 5963–5974 (2012). CrossRef Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al 6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater. 60, No. 17, 5963–5974 (2012). CrossRef
9.
go back to reference D. B. Goel, U. P. Roorkee, P. Furrer, and H. Warlimont, “Precipitation in aluminum manganese (iron, copper) alloys,” Aluminium 50, No. 8, 511–516 (1974). D. B. Goel, U. P. Roorkee, P. Furrer, and H. Warlimont, “Precipitation in aluminum manganese (iron, copper) alloys,” Aluminium 50, No. 8, 511–516 (1974).
10.
go back to reference Z. Li, Z. Zhang, and X. -G. Chen, “Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al–Mn–Mg 3xxx alloys with varying Mg and Si contents,” Mater. Sci. Eng., A 708, 383–394 (2017). CrossRef Z. Li, Z. Zhang, and X. -G. Chen, “Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al–Mn–Mg 3xxx alloys with varying Mg and Si contents,” Mater. Sci. Eng., A 708, 383–394 (2017). CrossRef
11.
go back to reference A. M. F. Muggerud, E. A. Mortsell, Y. Li, and R. Holmestad, “Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures,” Mater. Sci. Eng., A 567, 21–28 (2013). CrossRef A. M. F. Muggerud, E. A. Mortsell, Y. Li, and R. Holmestad, “Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures,” Mater. Sci. Eng., A 567, 21–28 (2013). CrossRef
12.
go back to reference Y. J. Li and L. Arnberg, “Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization,” Acta Mater. 51, No. 12, 3415–3428 (2003). CrossRef Y. J. Li and L. Arnberg, “Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization,” Acta Mater. 51, No. 12, 3415–3428 (2003). CrossRef
13.
go back to reference Y. J. Li, A. M. F. Muggerud, A. Olsen, and T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy,” Acta Mater. 60, No. 3, 1004–1014 (2012). CrossRef Y. J. Li, A. M. F. Muggerud, A. Olsen, and T. Furu, “Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy,” Acta Mater. 60, No. 3, 1004–1014 (2012). CrossRef
14.
go back to reference M. Poková, M. Cieslar, and J. Lacaze, “TEM investigation of precipitation in Al–Mn alloys with addition of Zr,” Manuf. Technol. 12, No. 2, 212–217 (2012). M. Poková, M. Cieslar, and J. Lacaze, “TEM investigation of precipitation in Al–Mn alloys with addition of Zr,” Manuf. Technol. 12, No. 2, 212–217 (2012).
15.
go back to reference Y. J. Li and L. Arnberg, “Precipitation of dispersoids in DC-cast 3003 alloy,” Mater. Sci. Forum 396–402, 875–880 (2002). Y. J. Li and L. Arnberg, “Precipitation of dispersoids in DC-cast 3003 alloy,” Mater. Sci. Forum 396–402, 875–880 (2002).
16.
go back to reference Y. J. Li and L. Arnberg, “Precipitation of dispersoids in DC-cast AA3103 alloy during heat treatment,” In Essential Readings in Light Metals (Springer, Berlin, 2016), pp. 1021–1027. Y. J. Li and L. Arnberg, “Precipitation of dispersoids in DC-cast AA3103 alloy during heat treatment,” In Essential Readings in Light Metals (Springer, Berlin, 2016), pp. 1021–1027.
17.
go back to reference W. B. Hutchinson, A. Oscarsson, and Å. Karlsson, “Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands,” Mater. Sci. Technol. 5, No. 11, 1118–1127 (1989). CrossRef W. B. Hutchinson, A. Oscarsson, and Å. Karlsson, “Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands,” Mater. Sci. Technol. 5, No. 11, 1118–1127 (1989). CrossRef
18.
go back to reference H. -W. Huang and B. -L. Ou, “Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy,” Mater. Des. 30, No. 7, 2685–2692 (2009). CrossRef H. -W. Huang and B. -L. Ou, “Evolution of precipitation during different homogenization treatments in a 3003 aluminum alloy,” Mater. Des. 30, No. 7, 2685–2692 (2009). CrossRef
19.
go back to reference G. Yi, B. Sun, J. D. Poplawsky, Y. Zhu, and M. L. Free, “Investigation of pre-existing particles in Al 5083 alloys,” J Alloys Compd. 740, 461–469 (2018). CrossRef G. Yi, B. Sun, J. D. Poplawsky, Y. Zhu, and M. L. Free, “Investigation of pre-existing particles in Al 5083 alloys,” J Alloys Compd. 740, 461–469 (2018). CrossRef
20.
go back to reference P. Donnadieu, G. Lapasset, and T. H. Sanders, “Manganese-induced ordering in the α-(Al–Mn–Fe–Si) approximant phase,” Philos. Mag. Lett. 70, No. 5, 319–326 (1994). CrossRef P. Donnadieu, G. Lapasset, and T. H. Sanders, “Manganese-induced ordering in the α-(Al–Mn–Fe–Si) approximant phase,” Philos. Mag. Lett. 70, No. 5, 319–326 (1994). CrossRef
21.
go back to reference L. Lodgaard and N. Ryum, “Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys,” Mater. Sci. Eng., A 283, Nos. 1–2, 144–152 (2000). CrossRef L. Lodgaard and N. Ryum, “Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys,” Mater. Sci. Eng., A 283, Nos. 1–2, 144–152 (2000). CrossRef
22.
go back to reference J. Rakhmonov, K. Liu, P. Rometsch, N. Parson, and X.-G. Chen, “Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content,” J. Alloys Compd. 861, 157937 (2021). CrossRef J. Rakhmonov, K. Liu, P. Rometsch, N. Parson, and X.-G. Chen, “Effects of Al(MnFe)Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content,” J. Alloys Compd. 861, 157937 (2021). CrossRef
23.
go back to reference V. Hansen, J. Gjønnes, and B. Andersson, “Quasicrystals as part of the precipitation sequence in an industrially cast aluminium alloy,” J. Mater. Sci. Lett. 8, No. 7, 823–826 (1989). CrossRef V. Hansen, J. Gjønnes, and B. Andersson, “Quasicrystals as part of the precipitation sequence in an industrially cast aluminium alloy,” J. Mater. Sci. Lett. 8, No. 7, 823–826 (1989). CrossRef
24.
go back to reference V. Hansen and J. Gjønnes, “Quasicrystals in an aluminium alloy matrix and the transformation to α‑AlMnSi via intermediate stage,” Philos. Mag. A 73, No. 4, 1147–1158 (1996). CrossRef V. Hansen and J. Gjønnes, “Quasicrystals in an aluminium alloy matrix and the transformation to α‑AlMnSi via intermediate stage,” Philos. Mag. A 73, No. 4, 1147–1158 (1996). CrossRef
25.
go back to reference F. Zupanič, D. Wang, C. Gspan, and T. Bončina, “Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy,” Mater. Charact. 106, 93–99 (2015). CrossRef F. Zupanič, D. Wang, C. Gspan, and T. Bončina, “Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy,” Mater. Charact. 106, 93–99 (2015). CrossRef
26.
go back to reference T. Bončina, M. Albu, and F. Zupanič, “Ageing of Al–Mn–Cu–Be alloys for stimulating precipitation of icosahedral quasicrystals,” Metals (Basel) 10, No. 7, 937 (2020). CrossRef T. Bončina, M. Albu, and F. Zupanič, “Ageing of Al–Mn–Cu–Be alloys for stimulating precipitation of icosahedral quasicrystals,” Metals (Basel) 10, No. 7, 937 (2020). CrossRef
27.
go back to reference A. G. Mochugovskiy, N. Y. Tabachkova, and A. V. Mikhaylovskaya, “Nanodispersoids of the quasicrystalline I-phase in Mn- and Mg-bearing aluminum-based alloys,” Mater. Lett. 284, 128945 (2021). CrossRef A. G. Mochugovskiy, N. Y. Tabachkova, and A. V. Mikhaylovskaya, “Nanodispersoids of the quasicrystalline I-phase in Mn- and Mg-bearing aluminum-based alloys,” Mater. Lett. 284, 128945 (2021). CrossRef
28.
go back to reference A. G. Mochugovskiy, N. Y. Tabachkova, M. E. Ghayoumabadi, V. V. Cheverikin, and A. V. Mikhaylovskaya, “Joint effect of quasicrystalline icosahedral and L1 2-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys,” J. Mater. Sci. Technol. 87, 196–206 (2021). CrossRef A. G. Mochugovskiy, N. Y. Tabachkova, M. E. Ghayoumabadi, V. V. Cheverikin, and A. V. Mikhaylovskaya, “Joint effect of quasicrystalline icosahedral and L1 2-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys,” J. Mater. Sci. Technol. 87, 196–206 (2021). CrossRef
29.
go back to reference A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019). CrossRef A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019). CrossRef
30.
go back to reference V. N. Chuvil’deev, I. S. Shadrina, A. V. Nokhrin, V. I. Kopylov, A. A. Bobrov, M. Yu. Gryaznov, S. V. Shotin, N. Yu. Tabachkova, M. K. Chegurov, and N. V. Melekhin, “An investigation of thermal stability of structure and mechanical properties of Al–0.5Mg–Sc ultrafine-grained aluminum alloys,” J. Alloys. Compd. 831, 154805 (2020). CrossRef V. N. Chuvil’deev, I. S. Shadrina, A. V. Nokhrin, V. I. Kopylov, A. A. Bobrov, M. Yu. Gryaznov, S. V. Shotin, N. Yu. Tabachkova, M. K. Chegurov, and N. V. Melekhin, “An investigation of thermal stability of structure and mechanical properties of Al–0.5Mg–Sc ultrafine-grained aluminum alloys,” J. Alloys. Compd. 831, 154805 (2020). CrossRef
31.
go back to reference A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Y. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019). CrossRef A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Y. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019). CrossRef
32.
go back to reference A. A. Kishchik, A. V. Mikhailovskaya, V. S. Levchenko, and V. K. Portnoi, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, No. 1, 96–103 (2017). CrossRef A. A. Kishchik, A. V. Mikhailovskaya, V. S. Levchenko, and V. K. Portnoi, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, No. 1, 96–103 (2017). CrossRef
33.
go back to reference L. F. Mondolfo, Aluminum Alloys (Elsevier, Amsterdam, 1976). L. F. Mondolfo, Aluminum Alloys (Elsevier, Amsterdam, 1976).
34.
go back to reference T. Kudo, A. Goto, and K. Saito, “High strain rate blow formability of newly developed Al–Mg–High–Mn alloy,” Mater. Sci. Forum 735, 271–277 (2012). CrossRef T. Kudo, A. Goto, and K. Saito, “High strain rate blow formability of newly developed Al–Mg–High–Mn alloy,” Mater. Sci. Forum 735, 271–277 (2012). CrossRef
35.
go back to reference D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, No. 20, 1951–1953 (1984). CrossRef D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, No. 20, 1951–1953 (1984). CrossRef
36.
go back to reference I. S. Golovin, A. V. Mikhailovskaya, M. A. Ryazantseva, A. Yu. Geptin, and A. N. Solonin, “Investigation of recrystallization in an Al–0.3 Mg alloy by the method of internal friction,” Phys. Met. Metallogr. 112, No. 6, 622–632 (2011). I. S. Golovin, A. V. Mikhailovskaya, M. A. Ryazantseva, A. Yu. Geptin, and A. N. Solonin, “Investigation of recrystallization in an Al–0.3 Mg alloy by the method of internal friction,” Phys. Met. Metallogr. 112, No. 6, 622–632 (2011).
37.
go back to reference I. S. Golovin, A. S. Bychkov, A. V. Mikhailovskaya, and S. V. Dobatkin, “Contributions of phase and structural transformations in multicomponent Al–Mg alloys to the linear and nonlinear mechanisms of anelasticity,” Phys. Met. Metallogr. 115, No. 2, 192–201 (2014). CrossRef I. S. Golovin, A. S. Bychkov, A. V. Mikhailovskaya, and S. V. Dobatkin, “Contributions of phase and structural transformations in multicomponent Al–Mg alloys to the linear and nonlinear mechanisms of anelasticity,” Phys. Met. Metallogr. 115, No. 2, 192–201 (2014). CrossRef
38.
go back to reference A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021). CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, M. Y. Zadorognyy, and I. S. Golovin, “Effect of heat treatment on the grain size control, superplasticity, internal friction, and mechanical properties of zirconium-bearing aluminum-based alloy,” J. Alloys Compd. 856, 157455 (2021). CrossRef
39.
go back to reference T. Gladman, “Precipitation hardening in metals,” Mater. Sci. Technol. 15, No. 1, 30–36 (1999). CrossRef T. Gladman, “Precipitation hardening in metals,” Mater. Sci. Technol. 15, No. 1, 30–36 (1999). CrossRef
40.
go back to reference W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al 3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014). CrossRef W. Lefebvre, N. Masquelier, J. Houard, R. Patte, and H. Zapolsky, “Tracking the path of dislocations across ordered Al 3Zr nano-precipitates in three dimensions,” Scr. Mater. 70, 43–46 (2014). CrossRef
41.
go back to reference A. W. Zhu and E. A. Starke, “Strengthening effect of unshearable particles of finite size: a computer experimental study,” Acta Mater. 47, No. 11, 3263–3269 (1999). CrossRef A. W. Zhu and E. A. Starke, “Strengthening effect of unshearable particles of finite size: a computer experimental study,” Acta Mater. 47, No. 11, 3263–3269 (1999). CrossRef
42.
go back to reference G. M. Hood and R. J. Schultz, “The diffusion of manganese in aluminium,” Philos. Mag. A J. Theor. Exp. Appl. Phys. 23, No. 186, 1479–1489 (1971). G. M. Hood and R. J. Schultz, “The diffusion of manganese in aluminium,” Philos. Mag. A J. Theor. Exp. Appl. Phys. 23, No. 186, 1479–1489 (1971).
43.
go back to reference J. G. Barlock and L. F. Mondolfo, “Structure of some aluminium–iron-magnesium–manganese–silicon alloys,” Z. Met. 66, 605–611 (1975). J. G. Barlock and L. F. Mondolfo, “Structure of some aluminium–iron-magnesium–manganese–silicon alloys,” Z. Met. 66, 605–611 (1975).
44.
go back to reference A. Shukla and A. D. Pelton, “Thermodynamic assessment of the Al–Mn and Mg–Al–Mn systems,” J. Phase Equilib. Diffus. 30, No. 1, 28–39 (2009). CrossRef A. Shukla and A. D. Pelton, “Thermodynamic assessment of the Al–Mn and Mg–Al–Mn systems,” J. Phase Equilib. Diffus. 30, No. 1, 28–39 (2009). CrossRef
Metadata
Title
Influence of Secondary Quasicrystalline I-Phase Precipitates on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy
Authors
A. V. Mikhaylovskaya
A. A. Kishchik
N. Yu. Tabachkova
A. S. Prosviryakov
A. G. Mochugovskiy
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050076