Skip to main content
Top
Published in: Steel in Translation 12/2020

01-12-2020

Influence of Silicon, Boron and Rare-Earth Metals on Corrosion Resistance of Austenitic Chromium-Nickel Steel

Authors: A. N. Maznichevskii, Yu. N. Goikhenberg, R. V. Sprikut

Published in: Steel in Translation | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of silicon (in range 0.14–0.78 wt %), boron, and rare-earth metals (REM) on the corrosion resistance of low-carbon austenitic chromium-nickel steel of 03Kh18N11 (AISI 304L) grade was studied. It is shown that all steels in the quenched state when tested in boiling 56 and 65% HNO3 solutions have comparable corrosion rates, which do not exceed the critical norm (0.5 mm/year) in accordance with GOST 6032–2017 (State Standard). Testing samples in boiling 27% HNO3 + 4 g/L Cr+6 solution are susceptible to intergranular corrosion (IGC). The corrosion rate and the penetration depth of IGC increase with additional silicon concentration from 0.14 to 0.78 wt %. The study focused on the effect of nitric acid concentration and test temperature has shown that steel with 0.78 wt % Si has significant corrosion losses exceeding the critical ones when testing in 56 and 65% HNO3 solutions with temperature of 120 and 130°С. But steel with high silicon content (0.78 wt %) and low carbon concentration (0.020–0.022%) after quenching in a range of 1080–1150°C and tempering at 650°C does not exceed the critical norm on average corrosion rate. Only 0.01 wt % increase in carbon concentration leads to a significant (more than 30 times) increase in corrosion rate of sensitized steel. It is shown that microalloying with REM does not impair corrosion resistance of sensitized steel. In contrast to REM, alloying chromium-nickel steel with even a small addition of boron (0.0015%) reduces steel corrosion resistance by an order of magnitude. Corrosion rate inverse dependence on quenching temperature is observed when, with increasing temperature, corrosion rate of 02Kh18N11GS0.38R steel increases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Naumenko, V.V., Nitrogen and silicon effect on mechanical and corrosion properties of low-carbon austenitic steel for use in highly oxidizing environments, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow, 2012. Naumenko, V.V., Nitrogen and silicon effect on mechanical and corrosion properties of low-carbon austenitic steel for use in highly oxidizing environments, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow, 2012.
2.
go back to reference Sahlaoui, H., Sidhom, H., and Philibert, J., Prediction of chromium depleted-zone evolution during aging of Ni–Cr–Fe alloys, Acta Mater., 2002, vol. 50, no. 6, pp. 1383–1392.CrossRef Sahlaoui, H., Sidhom, H., and Philibert, J., Prediction of chromium depleted-zone evolution during aging of Ni–Cr–Fe alloys, Acta Mater., 2002, vol. 50, no. 6, pp. 1383–1392.CrossRef
3.
go back to reference Laurent, B., Gruet, N., Gwinner, B., Miserque, F., Soares-Teixeira, V., and Ogle, K., Silicon enrichment of an austenitic stainless steel—Impact on electrochemical behavior in concentrated nitric acid with oxidizing ions, Electrochim. Acta, 2019, vol. 322, no. 1, art. ID 134703.CrossRef Laurent, B., Gruet, N., Gwinner, B., Miserque, F., Soares-Teixeira, V., and Ogle, K., Silicon enrichment of an austenitic stainless steel—Impact on electrochemical behavior in concentrated nitric acid with oxidizing ions, Electrochim. Acta, 2019, vol. 322, no. 1, art. ID 134703.CrossRef
4.
go back to reference Laurent, B., Gruet, N., Gwinner, B., Miserque, F., Rousseau, K., and Ogle, K., The kinetics of transpassive dissolution chemistry of stainless steels in nitric acid: the impact of Si, Electrochim. Acta, 2017, vol. 258, no. 20, pp. 653–661.CrossRef Laurent, B., Gruet, N., Gwinner, B., Miserque, F., Rousseau, K., and Ogle, K., The kinetics of transpassive dissolution chemistry of stainless steels in nitric acid: the impact of Si, Electrochim. Acta, 2017, vol. 258, no. 20, pp. 653–661.CrossRef
5.
go back to reference Sourmail, T., Too, C.H., and Bhadeshia, H.K.D.H., Sensitization and evolution of chromium-depleted zones in Fe–Cr–Ni–C systems, ISIJ Int., 2003, vol. 43, no. 11, pp. 1814–1820.CrossRef Sourmail, T., Too, C.H., and Bhadeshia, H.K.D.H., Sensitization and evolution of chromium-depleted zones in Fe–Cr–Ni–C systems, ISIJ Int., 2003, vol. 43, no. 11, pp. 1814–1820.CrossRef
6.
go back to reference Kain, V. and De, P.K., Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels, Int. J. Nucl. Energy Sci. Technol., 2005, vol. 1, nos. 2–3, pp. 220–231.CrossRef Kain, V. and De, P.K., Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels, Int. J. Nucl. Energy Sci. Technol., 2005, vol. 1, nos. 2–3, pp. 220–231.CrossRef
7.
go back to reference Robin, R., Miserque, F., and Spagnol, V., Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid, J. Nucl. Mater., 2008, vol. 375, no. 1, pp. 65–71.CrossRef Robin, R., Miserque, F., and Spagnol, V., Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid, J. Nucl. Mater., 2008, vol. 375, no. 1, pp. 65–71.CrossRef
8.
go back to reference Perrin, A.R. and Aust, K.T., Intergranular corrosion of high purity austenitic stainless steel containing silicon additions, Mater. Sci. Eng., 1981, vol. 51, no. 2, pp. 165–174.CrossRef Perrin, A.R. and Aust, K.T., Intergranular corrosion of high purity austenitic stainless steel containing silicon additions, Mater. Sci. Eng., 1981, vol. 51, no. 2, pp. 165–174.CrossRef
9.
go back to reference Armijo, J.S. and Wilde, B.E., Influence of Si content on the corrosion resistance of austenitic Fe–Cr–Ni alloys in oxidizing acids, Corros. Sci., 1968, vol. 8, no. 9, pp. 649–664.CrossRef Armijo, J.S. and Wilde, B.E., Influence of Si content on the corrosion resistance of austenitic Fe–Cr–Ni alloys in oxidizing acids, Corros. Sci., 1968, vol. 8, no. 9, pp. 649–664.CrossRef
10.
go back to reference Wilde, B.E., Influence of Silicon on the intergranular corrosion behavior of 18Cr–8Ni stainless steels, Corros. Sci., 1988, vol. 44, no. 10, pp. 699–704.CrossRef Wilde, B.E., Influence of Silicon on the intergranular corrosion behavior of 18Cr–8Ni stainless steels, Corros. Sci., 1988, vol. 44, no. 10, pp. 699–704.CrossRef
11.
go back to reference Kajimura, H., Usuki, N., and Nagano, H., Dual layer corrosion protective film formed on Si bearing austenitic stainless steel in highly oxidizing nitric acid, Proc. Symp. on Passivity and Its Breakdown, Pennington, NJ: Electrochem. Soc., 1998, pp. 332–343. Kajimura, H., Usuki, N., and Nagano, H., Dual layer corrosion protective film formed on Si bearing austenitic stainless steel in highly oxidizing nitric acid, Proc. Symp. on Passivity and Its Breakdown, Pennington, NJ: Electrochem. Soc., 1998, pp. 332–343.
12.
go back to reference Kasparova, O.V., Peculiarities of intergranular corrosion of siliconcontaining austenitic stainless steels, Zashch. Met., 2004, vol. 40, no. 5, pp. 475–481. Kasparova, O.V., Peculiarities of intergranular corrosion of siliconcontaining austenitic stainless steels, Zashch. Met., 2004, vol. 40, no. 5, pp. 475–481.
13.
go back to reference Ningshen, S., Mudali, U.K., Amarendra, G., and Ray, B., Corrosion assessment of nitric acid grade austenitic stainless steels, Corros. Sci., 2009, vol. 51, no. 2, pp. 322–329.CrossRef Ningshen, S., Mudali, U.K., Amarendra, G., and Ray, B., Corrosion assessment of nitric acid grade austenitic stainless steels, Corros. Sci., 2009, vol. 51, no. 2, pp. 322–329.CrossRef
14.
go back to reference Gwinner, B., Auroy, M., Balbaud-Celerier, F., Fauvet, P., Larabi-Gruet, N., Laghoutaris, P., and Robin, R., Towards a reliable determination of he intergranular corrosion rate of austenitic stainless steel in oxidizing media, Corros. Sci., 2016, vol. 107, pp. 60–75.CrossRef Gwinner, B., Auroy, M., Balbaud-Celerier, F., Fauvet, P., Larabi-Gruet, N., Laghoutaris, P., and Robin, R., Towards a reliable determination of he intergranular corrosion rate of austenitic stainless steel in oxidizing media, Corros. Sci., 2016, vol. 107, pp. 60–75.CrossRef
15.
go back to reference Ningshen, S., Mudali, U.K., Ramya, S., and Raj, B., Corrosion behavior of AISI type 304L stainless steel in nitric acid media containing oxidizing species, Corros. Sci., 2011, vol. 53, no. 1, pp. 64–70.CrossRef Ningshen, S., Mudali, U.K., Ramya, S., and Raj, B., Corrosion behavior of AISI type 304L stainless steel in nitric acid media containing oxidizing species, Corros. Sci., 2011, vol. 53, no. 1, pp. 64–70.CrossRef
16.
go back to reference Huang, K. and Loge, R.E., Microstructure and flow stress evolution during hot deformation of 304L austenitic stainless steel in variable thermomechanical conditions, Mater. Sci. Eng., A, 2018, vol. 711, pp. 600–610.CrossRef Huang, K. and Loge, R.E., Microstructure and flow stress evolution during hot deformation of 304L austenitic stainless steel in variable thermomechanical conditions, Mater. Sci. Eng., A, 2018, vol. 711, pp. 600–610.CrossRef
17.
go back to reference Stewart, G.R., Jonas, J.J., and Montheillet, F., Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel, ISIJ Int., 2004, vol. 44, no. 9, pp. 1581–1589.CrossRef Stewart, G.R., Jonas, J.J., and Montheillet, F., Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel, ISIJ Int., 2004, vol. 44, no. 9, pp. 1581–1589.CrossRef
18.
go back to reference Mukherjee, M. and Pal, T.K., Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels, Acta Metall. Sin., 2013, vol. 26, no. 2, pp. 206–216.CrossRef Mukherjee, M. and Pal, T.K., Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels, Acta Metall. Sin., 2013, vol. 26, no. 2, pp. 206–216.CrossRef
19.
go back to reference Nkhoma, R.K.C., Siyasiya, C.W., and Stumpf, W.E., Hot workability of AISI 321 and AISI 304 austenitic stainless steels, J. Alloys Compd., 2014, vol. 595, pp. 103–112.CrossRef Nkhoma, R.K.C., Siyasiya, C.W., and Stumpf, W.E., Hot workability of AISI 321 and AISI 304 austenitic stainless steels, J. Alloys Compd., 2014, vol. 595, pp. 103–112.CrossRef
20.
go back to reference Blinov, V.M., Structure and properties of high-temperature austenitic steels for superheater tubes, Russ. Metall. (Engl. Transl.), 2009, vol. 2009, no. 6, pp. 478–487. Blinov, V.M., Structure and properties of high-temperature austenitic steels for superheater tubes, Russ. Metall. (Engl. Transl.), 2009, vol. 2009, no. 6, pp. 478–487.
21.
go back to reference Chen, L., Zhang, Y., Li, F., Liu, X., Guo, B., and Jin, M., Modeling of dynamic recrystallization behavior of 21Cr–11Ni–N–RE lean austenitic heat-resistant steel during hot deformation, Mater. Sci. Eng., A, 2016, vol. 663, pp. 141–150.CrossRef Chen, L., Zhang, Y., Li, F., Liu, X., Guo, B., and Jin, M., Modeling of dynamic recrystallization behavior of 21Cr–11Ni–N–RE lean austenitic heat-resistant steel during hot deformation, Mater. Sci. Eng., A, 2016, vol. 663, pp. 141–150.CrossRef
22.
go back to reference Solntsev, Yu.P., Ermakov, B.S., and Malikov, S.O., Role of silicon in the formation of the corrosion resistance of austenitic materials for cryogenic engineering, Russ. Metall. (Engl. Transl.), 2008, vol. 2008, no. 2, pp. 133–137. Solntsev, Yu.P., Ermakov, B.S., and Malikov, S.O., Role of silicon in the formation of the corrosion resistance of austenitic materials for cryogenic engineering, Russ. Metall. (Engl. Transl.), 2008, vol. 2008, no. 2, pp. 133–137.
23.
go back to reference Fauvet, P., Balbaud, F., Robin, R., Tran, Q.-T., Mugnier, A., and Espinoux, D., Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants, J. Nucl. Mater., 2008, vol. 375, no. 1, pp. 52–64.CrossRef Fauvet, P., Balbaud, F., Robin, R., Tran, Q.-T., Mugnier, A., and Espinoux, D., Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants, J. Nucl. Mater., 2008, vol. 375, no. 1, pp. 52–64.CrossRef
24.
go back to reference Kasparova, O.V., Milman, V.M., and Kostromina, S.V., Mechanism of silicon effect on intergranular corrosion of tempered austenitic stainless steels, Zashch. Met., 1991, vol. 27, no. 1, pp. 55–63. Kasparova, O.V., Milman, V.M., and Kostromina, S.V., Mechanism of silicon effect on intergranular corrosion of tempered austenitic stainless steels, Zashch. Met., 1991, vol. 27, no. 1, pp. 55–63.
25.
go back to reference Kasparova, O.V. and Baldokhin, Yu.V., Effect of silicon on electron structure and corrosion-electrochemical behavior of Kh20N20 type phosphorus-containing steel, Zashch. Met., 2002, vol. 38, no. 5, pp. 463–469. Kasparova, O.V. and Baldokhin, Yu.V., Effect of silicon on electron structure and corrosion-electrochemical behavior of Kh20N20 type phosphorus-containing steel, Zashch. Met., 2002, vol. 38, no. 5, pp. 463–469.
Metadata
Title
Influence of Silicon, Boron and Rare-Earth Metals on Corrosion Resistance of Austenitic Chromium-Nickel Steel
Authors
A. N. Maznichevskii
Yu. N. Goikhenberg
R. V. Sprikut
Publication date
01-12-2020
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 12/2020
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091220120098

Other articles of this Issue 12/2020

Steel in Translation 12/2020 Go to the issue

Premium Partners