Skip to main content
Top
Published in: Physics of Metals and Metallography 10/2021

01-10-2021 | STRENGTH AND PLASTICITY

Influence of Surface Defect on the High Cycle Fatigue behavior of TB6 Titanium Alloy

Authors: Y. Ni, C. W. Zhou

Published in: Physics of Metals and Metallography | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High cycle fatigue tests of TB6 titanium alloy with surface defects of impact pit and scratch were carried out with different cyclic stress amplitude and different defect size. Thereafter SEM was employed to analyze the fatigue fracture morphology. Experimental results indicate that a surface defect like impact pit and scratch will decrease the fatigue life of TB6 alloy and the degradation of material’s fatigue resistance will be intensified with the increase of the defect depth. Fatigue crack initiation sites were figured out through SEM analysis, which was at the edge of impact pit and at the bottom for the scratch defect. Furthermore, the fatigue strength prediction models for the impact pit and scratch cases respectively were proposed based on Murakami’s empirical formula, and the predicted values of new models were in good agreement with fatigue test results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Huang, Y. Zhao, S. Xin, W. Zhou, and C. Tan, “High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with bimodal microstructure,” J. Alloys Compd. 695, 1966–1975 (2016).CrossRef C. Huang, Y. Zhao, S. Xin, W. Zhou, and C. Tan, “High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with bimodal microstructure,” J. Alloys Compd. 695, 1966–1975 (2016).CrossRef
2.
go back to reference S. Glode, J. Klemenc, F. Zupani, and M. Vesenjak, “High-cycle fatigue and fracture behaviours of SLM AlSi10Mg alloy,” Trans. Nonferrous Met. Soc. China. 30, 2577–2589 (2020).CrossRef S. Glode, J. Klemenc, F. Zupani, and M. Vesenjak, “High-cycle fatigue and fracture behaviours of SLM AlSi10Mg alloy,” Trans. Nonferrous Met. Soc. China. 30, 2577–2589 (2020).CrossRef
3.
go back to reference J. Singh, K. S. Arora, and D. K. Shukla, “High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints,” Int. J. Fatigue 137, 105663 (2020).CrossRef J. Singh, K. S. Arora, and D. K. Shukla, “High cycle fatigue performance of cold metal transfer (CMT) brazed C-Mn-440 steel joints,” Int. J. Fatigue 137, 105663 (2020).CrossRef
4.
go back to reference Z. Zhan, W. Hu, F. Shen, Q. Meng, J. Pu and Z. Guan, “Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage,” Int. J. Fatigue 96, 208–223 (2016).CrossRef Z. Zhan, W. Hu, F. Shen, Q. Meng, J. Pu and Z. Guan, “Fatigue life calculation for a specimen with an impact pit considering impact damage, residual stress relaxation and elastic-plastic fatigue damage,” Int. J. Fatigue 96, 208–223 (2016).CrossRef
5.
go back to reference Y. Nishimura, K. Yanase, Y. Ikeda, Y. Tanaka, N. Miyamoto, S. Miyakawa, and M. Endo, “Fatigue strength of spring steel with small scratches,” Fatigue Fract. Eng. Mater. Struct. 41, 1514–1528 (2018). Y. Nishimura, K. Yanase, Y. Ikeda, Y. Tanaka, N. Miyamoto, S. Miyakawa, and M. Endo, “Fatigue strength of spring steel with small scratches,” Fatigue Fract. Eng. Mater. Struct. 41, 1514–1528 (2018).
6.
go back to reference U. H. Tiong and R. Jones, “Damage tolerance analysis of a helicopter component,” Int. J. Fatigue 31, 1046–1053 (2009).CrossRef U. H. Tiong and R. Jones, “Damage tolerance analysis of a helicopter component,” Int. J. Fatigue 31, 1046–1053 (2009).CrossRef
7.
go back to reference J. O. Peters, B. L. Boyce, X. Chen, J. M. McNaney, J. W. Hutchinson, and R. O. Ritchie, “On the application of the Kitagawa-Takahashi diagram to foreign-object damage and high-cycle fatigue,” Eng. Fract. Mech. 69, 1425–1446 (2002).CrossRef J. O. Peters, B. L. Boyce, X. Chen, J. M. McNaney, J. W. Hutchinson, and R. O. Ritchie, “On the application of the Kitagawa-Takahashi diagram to foreign-object damage and high-cycle fatigue,” Eng. Fract. Mech. 69, 1425–1446 (2002).CrossRef
8.
go back to reference D. Nowell, D. Dini, and P. Duo, “Stress analysis of V‑notches with and without cracks, with application to foreign object damage,” J. Strain Anal. Eng. Des. 38, 429–441 (2003).CrossRef D. Nowell, D. Dini, and P. Duo, “Stress analysis of V‑notches with and without cracks, with application to foreign object damage,” J. Strain Anal. Eng. Des. 38, 429–441 (2003).CrossRef
9.
go back to reference Z. Zhao, L. Wang, J. Zhang, L. Liu, and W. Chen, “Prediction of high-cycle fatigue strength in a Ti-17 alloy blade after foreign object damage,” Eng. Fract. Mech. 107385 (2020). Z. Zhao, L. Wang, J. Zhang, L. Liu, and W. Chen, “Prediction of high-cycle fatigue strength in a Ti-17 alloy blade after foreign object damage,” Eng. Fract. Mech. 107385 (2020).
10.
go back to reference B. R. Krasnowski, K. M. Rotenberger, and W. W. Spence, “A Damage Tolerance Method for Helicopter Dynamic Components,” J. Am. Helicopter Soc. 36, 52–60 (1991).CrossRef B. R. Krasnowski, K. M. Rotenberger, and W. W. Spence, “A Damage Tolerance Method for Helicopter Dynamic Components,” J. Am. Helicopter Soc. 36, 52–60 (1991).CrossRef
11.
go back to reference L. Lazzeri and U. Mariani, “Application of Damage Tolerance principles to the design of helicopters,” Int. J. Fatigue. 31, 1039–1045 (2009).CrossRef L. Lazzeri and U. Mariani, “Application of Damage Tolerance principles to the design of helicopters,” Int. J. Fatigue. 31, 1039–1045 (2009).CrossRef
12.
go back to reference R. Jones, “Fatigue crack growth and damage tolerance,” Fatigue Fract. Eng. Mater. Struct. 37, 463–483 (2014).CrossRef R. Jones, “Fatigue crack growth and damage tolerance,” Fatigue Fract. Eng. Mater. Struct. 37, 463–483 (2014).CrossRef
13.
go back to reference S. M. O. Tavares and P. M. S. T. D. Castro, “An overview of fatigue in aircraft structures,” Fatigue Fract. Eng. Mater. Struct. 40, 1510–1529 (2017).CrossRef S. M. O. Tavares and P. M. S. T. D. Castro, “An overview of fatigue in aircraft structures,” Fatigue Fract. Eng. Mater. Struct. 40, 1510–1529 (2017).CrossRef
14.
go back to reference R. Talreja and N. Phan, “Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage,” Compos. Struct. 219, 1–7 (2019).CrossRef R. Talreja and N. Phan, “Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage,” Compos. Struct. 219, 1–7 (2019).CrossRef
15.
go back to reference M. Giglio, S. Beretta, U. Mariani, and G. Ratti, “Defect tolerance assessment of a helicopter component subjected to multi-axial load,” Eng. Fract. Mech. 77, 2479–2490 (2010).CrossRef M. Giglio, S. Beretta, U. Mariani, and G. Ratti, “Defect tolerance assessment of a helicopter component subjected to multi-axial load,” Eng. Fract. Mech. 77, 2479–2490 (2010).CrossRef
16.
go back to reference D. O. Adams and D. E. Tritsch, “Flaw tolerance substantiation test results for S-92 dynamic components,” 28th European Rotorcraft Forum (Bristol, 2002). D. O. Adams and D. E. Tritsch, “Flaw tolerance substantiation test results for S-92 dynamic components,” 28th European Rotorcraft Forum (Bristol, 2002).
17.
go back to reference A. Struzik, “NH90 Qualification According to Damage Tolerance,” Icaf Struct. Integrity Inf. Efficiency Green Imperatives, 877–897 (2011). A. Struzik, “NH90 Qualification According to Damage Tolerance,” Icaf Struct. Integrity Inf. Efficiency Green Imperatives, 877–897 (2011).
18.
go back to reference B. Wang, Z. Zhang, C. Shao, Q. Duan, J. Pang, H. Yang, X. Li, and Z. F. Zhang, “Improving the high-cycle fatigue lives of Fe–30Mn–0.9C twinning-induced plasticity steel through pre-straining,” Metall. Mater. Trans. A 46, 3317–3323 (2015).CrossRef B. Wang, Z. Zhang, C. Shao, Q. Duan, J. Pang, H. Yang, X. Li, and Z. F. Zhang, “Improving the high-cycle fatigue lives of Fe–30Mn–0.9C twinning-induced plasticity steel through pre-straining,” Metall. Mater. Trans. A 46, 3317–3323 (2015).CrossRef
19.
go back to reference K. Shiozawa, L. Lu, and S. Ishihara, “S–N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel,” Fatigue Fract. Eng. Mater. Struct. 24, 781–790 (2001).CrossRef K. Shiozawa, L. Lu, and S. Ishihara, “SN curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high carbon-chromium bearing steel,” Fatigue Fract. Eng. Mater. Struct. 24, 781–790 (2001).CrossRef
20.
go back to reference W. X. Yao, National Defence Industry Press (National Defence Industry Press, 2003) W. X. Yao, National Defence Industry Press (National Defence Industry Press, 2003)
21.
go back to reference Y. Qiu, J. C. Pang, M. X. Zhang, C. L. Zou, S. X. Li, and Z. F. Zhang, “Influence of temperature on the high-cycle fatigue properties of compacted graphite iron,” Int. J. Fatigue 112, 84–93 (2018).CrossRef Y. Qiu, J. C. Pang, M. X. Zhang, C. L. Zou, S. X. Li, and Z. F. Zhang, “Influence of temperature on the high-cycle fatigue properties of compacted graphite iron,” Int. J. Fatigue 112, 84–93 (2018).CrossRef
22.
go back to reference R. Pollak, A. Palazotto, and T. Nicholas, “A simulation-based investigation of the staircase method for fatigue strength testing,” Mech. Mater. 38, 1170–1181 (2006).CrossRef R. Pollak, A. Palazotto, and T. Nicholas, “A simulation-based investigation of the staircase method for fatigue strength testing,” Mech. Mater. 38, 1170–1181 (2006).CrossRef
23.
go back to reference X. P. Zhang, C. C. Zhang, and H. N. Xing, “Test Study on Fatigue Property for Forging and Casting Steels of Grade E,” Adv. Mater. Res. 712–715, 82–86 (2013). X. P. Zhang, C. C. Zhang, and H. N. Xing, “Test Study on Fatigue Property for Forging and Casting Steels of Grade E,” Adv. Mater. Res. 712715, 82–86 (2013).
24.
go back to reference R. K. Kumar, P. Sampathkumaran, S. Seetharamu, S. A. Kumar, and G. J. Naveen, “Investigation of short peening effect on titanium alloy affecting surface residual stress and roughness for aerospace applications,” Second Structural Integrity Conference & Exhibition (2018). R. K. Kumar, P. Sampathkumaran, S. Seetharamu, S. A. Kumar, and G. J. Naveen, “Investigation of short peening effect on titanium alloy affecting surface residual stress and roughness for aerospace applications,” Second Structural Integrity Conference & Exhibition (2018).
25.
go back to reference Y. Liu and N. Qu, “Obtaining high surface quality in electrolyte jet machining tb6 titanium alloy via enhanced product transport,” J. Mater. Process. Technol. 276, 116381–116381 (2020).CrossRef Y. Liu and N. Qu, “Obtaining high surface quality in electrolyte jet machining tb6 titanium alloy via enhanced product transport,” J. Mater. Process. Technol. 276, 116381–116381 (2020).CrossRef
26.
go back to reference J. Liu, J. Sun, U. K. U. Zaman, and W. Chen, “Influence of wear and tool geometry on the chatter, cutting force, and surface integrity of tb6 titanium alloy with solid carbide cutters of different geometry,” Strojniski Vestn. - J. Mech. Eng. 66, 709–723 (2020).CrossRef J. Liu, J. Sun, U. K. U. Zaman, and W. Chen, “Influence of wear and tool geometry on the chatter, cutting force, and surface integrity of tb6 titanium alloy with solid carbide cutters of different geometry,” Strojniski Vestn. - J. Mech. Eng. 66, 709–723 (2020).CrossRef
27.
go back to reference W. J. P. Van and A. Nurick, “Static pressure distribution in the inlet of a helicopter turbine compressor,” J. Aircr. 31, 1411–1413 (1994).CrossRef W. J. P. Van and A. Nurick, “Static pressure distribution in the inlet of a helicopter turbine compressor,” J. Aircr. 31, 1411–1413 (1994).CrossRef
28.
go back to reference Y. Murakami, “Metal fatigue: Effects of small defects and non-metalic inclusions,” Mater. Corros. 54, 198 (2003). Y. Murakami, “Metal fatigue: Effects of small defects and non-metalic inclusions,” Mater. Corros. 54, 198 (2003).
Metadata
Title
Influence of Surface Defect on the High Cycle Fatigue behavior of TB6 Titanium Alloy
Authors
Y. Ni
C. W. Zhou
Publication date
01-10-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21100070

Other articles of this Issue 10/2021

Physics of Metals and Metallography 10/2021 Go to the issue