Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

19-01-2021 | Research Article-Mechanical Engineering

Influence of the 2-phase Flow Models on Prediction of Absorber Tube Performance

Authors: K. A. Khalid, A. Al-Sarkhi, H. M. Bahaidarah

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is crucial to identify flow regimes/patterns in order to calculate the pressure drop and heat transfer coefficient (HTC) with high accuracy in flow boiling. Researchers have not paid too much attention to the two-phase (2-phase) phenomena and the influence of the 2-phase flow parameters on the performance of absorber tubes. This parametric study sheds the light on some of the well-known and widely used 2-phase flow models/correlations and their impact on absorber performance prediction. The results of 2-phase flow models were compared with experimental data for refrigerants and water to validate these models. Different HTC models are studied. However, the main parameters affecting the absorber tube performance are analyzed and validated. The results showed that for the refrigerant R134a case Wojtan et al. HTC model exhibited the best fit with the experimental data, while in the case of water Shah correlation found to be the best. Moreover, for the pressure drop, Lockhart–Martinelli model showed the best agreement with the experimental data especially at high qualities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alguacil, M.; Prieto, C.; Rodriguez, A.; Lohr, J.: Direct steam generation in parabolic trough collectors. Energy Procedia 49, 21–29 (2013)CrossRef Alguacil, M.; Prieto, C.; Rodriguez, A.; Lohr, J.: Direct steam generation in parabolic trough collectors. Energy Procedia 49, 21–29 (2013)CrossRef
2.
go back to reference Zarza, E.: Generación Directa de Vapor con Colectores Solares Cilindroparabólicos (2004) Zarza, E.: Generación Directa de Vapor con Colectores Solares Cilindroparabólicos (2004)
3.
go back to reference Moreno Quibén, J.; Thome, J.R.: Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int. J. Heat Fluid Flow 28(5), 1060–1072 (2007)CrossRef Moreno Quibén, J.; Thome, J.R.: Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int. J. Heat Fluid Flow 28(5), 1060–1072 (2007)CrossRef
4.
go back to reference Taitel, Y.; Dukler, A.: A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid ow. AIChE J. 22(1), 47–55 (1976)CrossRef Taitel, Y.; Dukler, A.: A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid ow. AIChE J. 22(1), 47–55 (1976)CrossRef
5.
go back to reference Barnea, D.; Shoham, O.; Taitel, Y.; Dukler, A.E.: Gas–liquid flow in inclined tubes: flow pattern transition for upward flow. Chem. Eng. Sci 40, 131–136 (1985)CrossRef Barnea, D.; Shoham, O.; Taitel, Y.; Dukler, A.E.: Gas–liquid flow in inclined tubes: flow pattern transition for upward flow. Chem. Eng. Sci 40, 131–136 (1985)CrossRef
6.
go back to reference Hanratty, T.J.: Gas–liquid flow in pipelines. PCH Physicochem. Hydrodyn. 9, 101–114 (1987) Hanratty, T.J.: Gas–liquid flow in pipelines. PCH Physicochem. Hydrodyn. 9, 101–114 (1987)
7.
go back to reference Taitel, Y.: Flow pattern transition in two phase flow. In: Proceeding 91st International Heat Transfer Conference, vol. 1, pp. 237–253. Hemisphere Publishing Corporation, New York (1990) Taitel, Y.: Flow pattern transition in two phase flow. In: Proceeding 91st International Heat Transfer Conference, vol. 1, pp. 237–253. Hemisphere Publishing Corporation, New York (1990)
8.
go back to reference Odeh, S.D.; Behnia, M.; Morrison, G.L.: Hydrodynamic analysis of direct steam generation solar collectors. Trans. ASME 122, 14–22 (2000) Odeh, S.D.; Behnia, M.; Morrison, G.L.: Hydrodynamic analysis of direct steam generation solar collectors. Trans. ASME 122, 14–22 (2000)
9.
go back to reference Sun, J.; Liu, Q.; Hong, H.: Numerical study of parabolic-trough direct steam generation loop in recirculation mode: characteristics, performance and general operation strategy. Energy Convers. Manag. 96, 287–302 (2015)CrossRef Sun, J.; Liu, Q.; Hong, H.: Numerical study of parabolic-trough direct steam generation loop in recirculation mode: characteristics, performance and general operation strategy. Energy Convers. Manag. 96, 287–302 (2015)CrossRef
10.
go back to reference Baba, Y.D.; Ribeiro, J.X.F.; Aliyu, A.M.; Archibong-Eso, A.; Abubakar, U.D.; Ehinmowo, A.B.: Characteristics of horizontal gas–liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry. Sci. Afr. 10, 1–10 (2020)CrossRef Baba, Y.D.; Ribeiro, J.X.F.; Aliyu, A.M.; Archibong-Eso, A.; Abubakar, U.D.; Ehinmowo, A.B.: Characteristics of horizontal gas–liquid two-phase flow measurement in a medium-sized pipe using gamma densitometry. Sci. Afr. 10, 1–10 (2020)CrossRef
11.
go back to reference Hota, S.K.; Duong, V.; Diaz, G.: Two-phase flow performance prediction for minichannel solar collectors. Heat Mass Transf. Stoffuebertragung 56(1), 109–120 (2020)CrossRef Hota, S.K.; Duong, V.; Diaz, G.: Two-phase flow performance prediction for minichannel solar collectors. Heat Mass Transf. Stoffuebertragung 56(1), 109–120 (2020)CrossRef
12.
go back to reference Shadloo, M.S.; Rahmat, A.; Karimipour, A.; Wongwises, S.: Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J. Energy Resour. Technol. Trans. ASME 142(11), 112110 (2020)CrossRef Shadloo, M.S.; Rahmat, A.; Karimipour, A.; Wongwises, S.: Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J. Energy Resour. Technol. Trans. ASME 142(11), 112110 (2020)CrossRef
13.
go back to reference Sassi, P.; Pallarès, J.; Stiriba, Y.: Visualization and measurement of two-phase flows in horizontal pipelines. Exp. Comput. Multiph. Flow 2(1), 41–51 (2020)CrossRef Sassi, P.; Pallarès, J.; Stiriba, Y.: Visualization and measurement of two-phase flows in horizontal pipelines. Exp. Comput. Multiph. Flow 2(1), 41–51 (2020)CrossRef
14.
go back to reference Ghajar, A.J.: Two-phase Gas–Liquid Flow in Pipes with Different Orientations. Springer, Berlin (2020)CrossRef Ghajar, A.J.: Two-phase Gas–Liquid Flow in Pipes with Different Orientations. Springer, Berlin (2020)CrossRef
15.
go back to reference Kattan, N.; Thome, J.R.; Favrat, D.: Flow boiling in horizontal tubes: part 1—development of a diabatic two-phase flow pattern map. J. Heat Transf. 120(1), 140–147 (1998)CrossRef Kattan, N.; Thome, J.R.; Favrat, D.: Flow boiling in horizontal tubes: part 1—development of a diabatic two-phase flow pattern map. J. Heat Transf. 120(1), 140–147 (1998)CrossRef
16.
go back to reference Zürcher, O.; Favrat, D.; Thome, J.R.: Development of a diabatic two-phase flow pattern map for horizontal flow boiling. Int. J. Heat Mass Transf. 45(2), 291–301 (2001)CrossRef Zürcher, O.; Favrat, D.; Thome, J.R.: Development of a diabatic two-phase flow pattern map for horizontal flow boiling. Int. J. Heat Mass Transf. 45(2), 291–301 (2001)CrossRef
17.
go back to reference Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transf. 48(14), 2955–2969 (2005)CrossRef Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transf. 48(14), 2955–2969 (2005)CrossRef
18.
go back to reference Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part II—development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int. J. Heat Mass Transf. 48(14), 2970–2985 (2005)CrossRef Wojtan, L.; Ursenbacher, T.; Thome, J.R.: Investigation of flow boiling in horizontal tubes: part II—development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int. J. Heat Mass Transf. 48(14), 2970–2985 (2005)CrossRef
19.
go back to reference Steiner, D.: Zweiphasen stromung in Apparatenelementen, Hochschulkurs Warmeubertragung II. Forschungs-Ge-sellschaft Verfahrenstechnik e.V., Dusseldorf (1983) Steiner, D.: Zweiphasen stromung in Apparatenelementen, Hochschulkurs Warmeubertragung II. Forschungs-Ge-sellschaft Verfahrenstechnik e.V., Dusseldorf (1983)
20.
go back to reference Armand, A.A.: The resistance during the movement of a two-phase system in horizontal pipes (1959) Armand, A.A.: The resistance during the movement of a two-phase system in horizontal pipes (1959)
21.
go back to reference Kroeger, P.G.; Zuber, N.: An analysis of the effects of various parameters on the average void fractions in subcooled boiling. Int. J. Heat Mass Transf. 11(2), 211–233 (1968)CrossRef Kroeger, P.G.; Zuber, N.: An analysis of the effects of various parameters on the average void fractions in subcooled boiling. Int. J. Heat Mass Transf. 11(2), 211–233 (1968)CrossRef
22.
go back to reference Rouhani, S.Z.; Axelsson, E.: Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transf. 13(2), 383–393 (1970)CrossRef Rouhani, S.Z.; Axelsson, E.: Calculation of void volume fraction in the subcooled and quality boiling regions. Int. J. Heat Mass Transf. 13(2), 383–393 (1970)CrossRef
23.
go back to reference Zhang, H.-Q.; Wang, Q.; Sarica, C.; Brill, J.P.: Unified model for gas–liquid pipe flow via slug dynamics—part 1: model development. J. Energy Resour. Technol. 125(4), 266 (2003)CrossRef Zhang, H.-Q.; Wang, Q.; Sarica, C.; Brill, J.P.: Unified model for gas–liquid pipe flow via slug dynamics—part 1: model development. J. Energy Resour. Technol. 125(4), 266 (2003)CrossRef
24.
go back to reference Barnea, D.: A unified model for predicting transitions for the whole pipe inclinations. Int. J. Multiph. Flow 13(I), 1–12 (1987)CrossRef Barnea, D.: A unified model for predicting transitions for the whole pipe inclinations. Int. J. Multiph. Flow 13(I), 1–12 (1987)CrossRef
25.
go back to reference Dengler, J.N.; Addoms, C.E.: Heat transfer mechanism for vaporization of water in a vertical tube. Chem. Eng. 18(52), 95–103 (1956) Dengler, J.N.; Addoms, C.E.: Heat transfer mechanism for vaporization of water in a vertical tube. Chem. Eng. 18(52), 95–103 (1956)
26.
go back to reference Shah, M.M.: Chart correlation for saturated boiling heat transfer: equation and further study. ASHRAE Trans. 88(1), 185–196 (1982) Shah, M.M.: Chart correlation for saturated boiling heat transfer: equation and further study. ASHRAE Trans. 88(1), 185–196 (1982)
27.
go back to reference Kandlikar, S.G.: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf. 112(1), 219 (1990)CrossRef Kandlikar, S.G.: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf. 112(1), 219 (1990)CrossRef
28.
go back to reference Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev. 5(3), 322–329 (1966)CrossRef Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng. Chem. Process Des. Dev. 5(3), 322–329 (1966)CrossRef
29.
go back to reference Chen, D.L.B.J.C.: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. Am. Inst. Chem. Eng. 26(3), 454–461 (1980)CrossRef Chen, D.L.B.J.C.: Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. Am. Inst. Chem. Eng. 26(3), 454–461 (1980)CrossRef
30.
go back to reference Gungor, K.E.; Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29(3), 351–358 (1986)CrossRef Gungor, K.E.; Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29(3), 351–358 (1986)CrossRef
31.
go back to reference Wattelet, J.P., Chato, J.C., Souza, A.L., Christoffersen, B.R.: Evaporative Characteristics of R-134a, MP-39, and R-12 at Low Mass Fluxes Acustar Division of Chrysler Carrier Corporation Ford Motor Company General Electric Company Harrison Division of GM ICI Americas, Inc. Modine Manufacturing Co. Peerless of Ame, vol. 61801, May 1993 Wattelet, J.P., Chato, J.C., Souza, A.L., Christoffersen, B.R.: Evaporative Characteristics of R-134a, MP-39, and R-12 at Low Mass Fluxes Acustar Division of Chrysler Carrier Corporation Ford Motor Company General Electric Company Harrison Division of GM ICI Americas, Inc. Modine Manufacturing Co. Peerless of Ame, vol. 61801, May 1993
32.
go back to reference Friedel, L.: Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Eur. Two-phase Flow Gr. Meet. Pap. E2, Ispra, Italy (1979) Friedel, L.: Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Eur. Two-phase Flow Gr. Meet. Pap. E2, Ispra, Italy (1979)
33.
go back to reference Lockhart, R.W.; Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component in pipes. Chem. Eng. Process. 45(1), 39–48 (1949) Lockhart, R.W.; Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component in pipes. Chem. Eng. Process. 45(1), 39–48 (1949)
34.
go back to reference Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16, 347–358 (1973)CrossRef Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16, 347–358 (1973)CrossRef
35.
go back to reference Muller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20, 297–308 (1986)CrossRef Muller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process. 20, 297–308 (1986)CrossRef
36.
go back to reference Bankoff, S.G.: A variable density single-fluid model two-phase flow with particular reference to steam-water. J. Heat Transf. 11(Series B), 265–272 (1960)CrossRef Bankoff, S.G.: A variable density single-fluid model two-phase flow with particular reference to steam-water. J. Heat Transf. 11(Series B), 265–272 (1960)CrossRef
37.
go back to reference Cicchitti, R.Z.A.; Lombardi, C.; Silvestri, M.; Soldaini, G.: Two-phase cooling experiments—pressure drop, heat transfer and burnout measurements. Energy Nucl. 7(6), 407–425 (1960) Cicchitti, R.Z.A.; Lombardi, C.; Silvestri, M.; Soldaini, G.: Two-phase cooling experiments—pressure drop, heat transfer and burnout measurements. Energy Nucl. 7(6), 407–425 (1960)
38.
go back to reference Baroczy, C.J.: A systematic correlation for two-phase pressure drop. Chem. Eng. Prog. Symp. Ser. 62(44), 232–249 (1966) Baroczy, C.J.: A systematic correlation for two-phase pressure drop. Chem. Eng. Prog. Symp. Ser. 62(44), 232–249 (1966)
39.
go back to reference Lobón, D.H.; Valenzuela, L.; Baglietto, E.: Modeling the dynamics of the multiphase fluid in the parabolic-trough solar steam generating systems. Energy Convers. Manag. 78, 393–404 (2014)CrossRef Lobón, D.H.; Valenzuela, L.; Baglietto, E.: Modeling the dynamics of the multiphase fluid in the parabolic-trough solar steam generating systems. Energy Convers. Manag. 78, 393–404 (2014)CrossRef
40.
go back to reference da Silva Lima, R.J.; Quibén, J.M.; Thome, J.R.: Flow boiling in horizontal smooth tubes: new heat transfer results for R-134a at three saturation temperatures. Appl. Therm. Eng. 29(7), 1289–1298 (2009)CrossRef da Silva Lima, R.J.; Quibén, J.M.; Thome, J.R.: Flow boiling in horizontal smooth tubes: new heat transfer results for R-134a at three saturation temperatures. Appl. Therm. Eng. 29(7), 1289–1298 (2009)CrossRef
41.
go back to reference Bang, K.H.; Kim, K.K.; Lee, S.K.; Lee, B.W.: Pressure effect on flow boiling heat transfer of water in minichannels. Int. J. Therm. Sci. 50(3), 280–286 (2011)CrossRef Bang, K.H.; Kim, K.K.; Lee, S.K.; Lee, B.W.: Pressure effect on flow boiling heat transfer of water in minichannels. Int. J. Therm. Sci. 50(3), 280–286 (2011)CrossRef
42.
go back to reference Hardik, B.K.; Prabhu, S.V.: Boiling pressure drop and local heat transfer distribution of water in horizontal straight tubes at low pressure. Nanotechnology 27(9), 3505–3515 (2019) Hardik, B.K.; Prabhu, S.V.: Boiling pressure drop and local heat transfer distribution of water in horizontal straight tubes at low pressure. Nanotechnology 27(9), 3505–3515 (2019)
43.
go back to reference Lobón, D.H.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Appl. Energy 113, 1338–1348 (2014)CrossRef Lobón, D.H.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Appl. Energy 113, 1338–1348 (2014)CrossRef
Metadata
Title
Influence of the 2-phase Flow Models on Prediction of Absorber Tube Performance
Authors
K. A. Khalid
A. Al-Sarkhi
H. M. Bahaidarah
Publication date
19-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05232-9

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners