Skip to main content
Top

2018 | OriginalPaper | Chapter

Influence of the Current Field Non-stationarity and the Non-simultaneity of Hydrographic Measurements on ADCP-based Transport Estimates

Author : R. Yu. Tarakanov

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Non-stationarity of the current’s field in combination with non-simultaneous measurements at stations of a hydrographic section leads to distortions in the ADCP-based assessments of total geostrophic barotropic transport over the section. These distortions over 49 particular sections from-shore-to-shore in different regions of the World Ocean are investigated on the basis of satellite altimetry data of Sea Level Anomaly, Absolute Dynamic Topography (ADT), and Formal Mapping Error (FME) available in the Internet (http://​www.​aviso.​altimetry.​fr). Distortions of barotropic transport have two components. The first is due to a change in the field of currents during measurements from station to station. It can be taken into account in the structure of the transport across the section from satellite altimetry data. The second is related to the displacement of streamlines of the geostrophic current at the ocean surface (ADT isolines) relative to the isobaths and represents the variability range of the instantaneous barotropic transport across the section track estimated on the basis of the same data during the time interval of measurements over this section. Assessments of these distortions are compared with the estimates of the errors of the barotropic transport over particular hydrographic sections. It is shown that the main component of these errors is the FME. Often, both components of the barotropic transport distortion are greater than the barotropic transport error, even for “rapid” sections, which are occupied in 6–12 days. Examples exist, in which significant transport distortions are accumulated during even shorter time periods of 3–5 days. Thus, investigation of the non-stationarity of the velocity field in combination with the non-simultaneity of hydrographic measurements is absolutely necessary for the analyses of the total transport and its structure across a hydrographic section.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arhan, M., Naveira Garabato, A. C., Heywood, K. J., & Stevens, D. P. (2002). The Antarctic Circumpolar Current between the Falkland Islands and South Georgia. Journal of Physical Oceanography, 32(6), 1914–1931.CrossRef Arhan, M., Naveira Garabato, A. C., Heywood, K. J., & Stevens, D. P. (2002). The Antarctic Circumpolar Current between the Falkland Islands and South Georgia. Journal of Physical Oceanography, 32(6), 1914–1931.CrossRef
4.
go back to reference Dye, S., Hansen, B., Østerhus, S., Quadfasel, D., & Rudels, B. (2007). The overflow of dense water across the Greenland-Scotland Ridge. Exchanges, 40, 20–22. Dye, S., Hansen, B., Østerhus, S., Quadfasel, D., & Rudels, B. (2007). The overflow of dense water across the Greenland-Scotland Ridge. Exchanges, 40, 20–22.
5.
go back to reference Gladyshev, S., Arhan, M., Sokov, A., & Speich, S. (2008). A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-Sea Research Part I, 55(10), 1284–1303.CrossRef Gladyshev, S., Arhan, M., Sokov, A., & Speich, S. (2008). A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-Sea Research Part I, 55(10), 1284–1303.CrossRef
6.
go back to reference Gladyshev, S. V., Koshlyakov, M. N., & Tarakanov, R. Y. (2008). Currents in the Drake Passage based on observations in 2007. Oceanology, 48(6), 759–770.CrossRef Gladyshev, S. V., Koshlyakov, M. N., & Tarakanov, R. Y. (2008). Currents in the Drake Passage based on observations in 2007. Oceanology, 48(6), 759–770.CrossRef
7.
go back to reference Imawaki, S., Uchida, H., Ichikawa, H., Fukasawa, M., Umatani, S., & ASUKA Group. (2001). Satellite altimeter monitoring the Kuroshio Transport South of Japan. Geophysical Research Letters, 28, 17–20.CrossRef Imawaki, S., Uchida, H., Ichikawa, H., Fukasawa, M., Umatani, S., & ASUKA Group. (2001). Satellite altimeter monitoring the Kuroshio Transport South of Japan. Geophysical Research Letters, 28, 17–20.CrossRef
8.
go back to reference Koenig, Z., Provost, C., Park, Y. H., Ferrari, R., & Sennéchael, N. (2016). Anatomy of the Antarctic Circumpolar Current volume transports through Drake Passage. Journal of Geophysical Research: Oceans, 121, 2572–2595. https://doi.org/10.1002/2015JC011436. Koenig, Z., Provost, C., Park, Y. H., Ferrari, R., & Sennéchael, N. (2016). Anatomy of the Antarctic Circumpolar Current volume transports through Drake Passage. Journal of Geophysical Research: Oceans, 121, 2572–2595. https://​doi.​org/​10.​1002/​2015JC011436.
9.
go back to reference Koshlyakov, M. N., Lisina, I. I., Morozov, E. G., & Tarakanov, R. Y. (2007). Absolute Geostrophic Currents in the Drake Passage Based on observations in 2003 and 2005. Oceanology, 47(4), 451–463.CrossRef Koshlyakov, M. N., Lisina, I. I., Morozov, E. G., & Tarakanov, R. Y. (2007). Absolute Geostrophic Currents in the Drake Passage Based on observations in 2003 and 2005. Oceanology, 47(4), 451–463.CrossRef
10.
go back to reference Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Ryzhikov, N. I. (2010). Deep Currents in the Central Part of the Drake Passage based on the data of the 2008 hydrographic survey. Oceanology, 50(6), 821–828.CrossRef Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Ryzhikov, N. I. (2010). Deep Currents in the Central Part of the Drake Passage based on the data of the 2008 hydrographic survey. Oceanology, 50(6), 821–828.CrossRef
11.
go back to reference Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2011). Currents in the Western Drake Passage according to the observations in January of 2010. Oceanology, 51(2), 187–198.CrossRef Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2011). Currents in the Western Drake Passage according to the observations in January of 2010. Oceanology, 51(2), 187–198.CrossRef
12.
go back to reference Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2012). Currents in the Drake Passage based on the observations in November of 2010. Oceanology, 52(3), 299–308.CrossRef Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2012). Currents in the Drake Passage based on the observations in November of 2010. Oceanology, 52(3), 299–308.CrossRef
13.
go back to reference Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2013). Currents in the Drake Passage by the observations in October–November of 2011. Oceanology, 53(1), 1–12.CrossRef Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2013). Currents in the Drake Passage by the observations in October–November of 2011. Oceanology, 53(1), 1–12.CrossRef
14.
go back to reference Qiu, B., & Joyce, T. M. (1992). Interannual variability in the mid- and low latitude western North Pacific. Journal of Physical Oceanography, 22, 1062–1079.CrossRef Qiu, B., & Joyce, T. M. (1992). Interannual variability in the mid- and low latitude western North Pacific. Journal of Physical Oceanography, 22, 1062–1079.CrossRef
15.
go back to reference Rio, M. H., Mulet, S., & Picot. N. (2013). New global mean dynamic topography from a GOCE geoid model, altimeter measurements and oceanographic in-situ data. In Proceedings of the ESA Living Planet Symposium, Edinburg, September 2013. Rio, M. H., Mulet, S., & Picot. N. (2013). New global mean dynamic topography from a GOCE geoid model, altimeter measurements and oceanographic in-situ data. In Proceedings of the ESA Living Planet Symposium, Edinburg, September 2013.
16.
go back to reference Roach, A. T., Aagaard, K., Pease, C. H., Salo, S. A., Weingartner, T., Pavlov, V., et al. (1995). Direct measurements of transport and water properties through the Bering Strait. Journal of Geophysical Research, 100(C9), 18443–18457.CrossRef Roach, A. T., Aagaard, K., Pease, C. H., Salo, S. A., Weingartner, T., Pavlov, V., et al. (1995). Direct measurements of transport and water properties through the Bering Strait. Journal of Geophysical Research, 100(C9), 18443–18457.CrossRef
17.
go back to reference Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962. Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962.
18.
go back to reference Talley, L. D., Reid, J. L., & Robbins, P. E. (2003). Data-based meridional Overturning stream functions for the global ocean. Journal of Climate, 16(10), 3213–3226.CrossRef Talley, L. D., Reid, J. L., & Robbins, P. E. (2003). Data-based meridional Overturning stream functions for the global ocean. Journal of Climate, 16(10), 3213–3226.CrossRef
Metadata
Title
Influence of the Current Field Non-stationarity and the Non-simultaneity of Hydrographic Measurements on ADCP-based Transport Estimates
Author
R. Yu. Tarakanov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_23