Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Metallurgist 5-6/2022

28-09-2022

Influence of Tool Steel Chemical Composition on Structure and Phase Composition of a Diffusion Layer after Microarc Boriding

Authors: Yu. M. Dombrovskii, M. S. Stepanov

Published in: Metallurgist | Issue 5-6/2022

Login to get access
share
SHARE

Abstract

The effect of alloy tool steel chemical composition on structure and phase composition of a diffusion layer after microarc boriding is studied. Specimens of die steels 5KhNM and Kh12F1, and high-speed steel R6M5K5 are studied. Current density at a specimen surface is varied from 0.45 to 0.53 A/cm2. Diffusion impregnation duration is from 2 to 8 minutes. During steel 5KhNM microarc boriding diffusion layer microstructure is governed by surface current density. With current density of 0.53 A/cm2 there is formation of an inhomogeneous diffusion layer structure that consists of a base in the form of a fine ferrite-carbide mixture with microhardness of 7.0–8.0 GPa, within which there are carbide and boride phase inclusions and areas of carboboride eutectic with microhardness of 12.0–12.5 GPa. Eutectic content is reduced compared with boriding steel not containing carbide-forming elements within the composition This is explained by the effect of strong carbide-forming elements within the steel composition on displacement of the formation of carboboride eutectic process into a higher temperature region. For the same reason, microarc boriding of Kh12F1 and R6M5K5 steels with all values of surface current density does not lead to formation of a carboboride eutectic due to a higher content of strong carbideforming elements within the composition. The greatest boride layer thickness is observed for maximum values of surface current density and process duration.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference L. G. Voroshnin, O. L. Mendeleeva, and V. A. Smetkin, Theory and Technology of Chemical Heat Treatment: teaching aid [in Russian], Novoe Znanaie, Moscow-Minsk (2010). L. G. Voroshnin, O. L. Mendeleeva, and V. A. Smetkin, Theory and Technology of Chemical Heat Treatment: teaching aid [in Russian], Novoe Znanaie, Moscow-Minsk (2010).
2.
go back to reference Yu. M. Lakhtin and B. N. Arzamasov, Metal Chemical Heat Treatment, [in Russian] Metallurgiya, Moscow 91985). Yu. M. Lakhtin and B. N. Arzamasov, Metal Chemical Heat Treatment, [in Russian] Metallurgiya, Moscow 91985).
3.
go back to reference A. M. Gur’ev, S. G. Ivanov, and I. A. Garmaeva, Diffusion Coatings for Steels and Alloys [in Russian] OOO Sistemy Uprav, Barnaul (2013). A. M. Gur’ev, S. G. Ivanov, and I. A. Garmaeva, Diffusion Coatings for Steels and Alloys [in Russian] OOO Sistemy Uprav, Barnaul (2013).
4.
go back to reference E. V. Berlin, N. N. Koval’, and L. A. Seidman, Plasma-Chemical Heat Treatment of Steel Components [in Russian] Tekhnosfera, Moscow (2012). E. V. Berlin, N. N. Koval’, and L. A. Seidman, Plasma-Chemical Heat Treatment of Steel Components [in Russian] Tekhnosfera, Moscow (2012).
5.
go back to reference I. V. Suminov, P. N. Belkin, A. V. Épel’fel’d, et al., Plasma-Electrolytic Modification of Metal and Alloy Surface, in 2 Vol. [in Russian] Tekhnosfera, Moscow (2011). I. V. Suminov, P. N. Belkin, A. V. Épel’fel’d, et al., Plasma-Electrolytic Modification of Metal and Alloy Surface, in 2 Vol. [in Russian] Tekhnosfera, Moscow (2011).
6.
go back to reference V. A. Aleksandrov, L. G. Petrova, A. S. Sergeeva, V. D. Aleksandrov, and É. U. Akhmetzhanova, “Combined plasma chemical heat treatment methods for creating modified coatings on a tool,” STIN, No. 3, 13–16 (2019). V. A. Aleksandrov, L. G. Petrova, A. S. Sergeeva, V. D. Aleksandrov, and É. U. Akhmetzhanova, “Combined plasma chemical heat treatment methods for creating modified coatings on a tool,” STIN, No. 3, 13–16 (2019).
9.
go back to reference I. N. Kravchenko, S. V. Kartsev, S. A. Velichko, Yu. A. Kuznetsov, O. A. Sharaya, M. A. Markov, and A. D. Bykova, “Metallographic study of structure and physicomechanical properties of coatings prepared by plasma methods,” Metallurg, No. 8, 69–76 (2021). I. N. Kravchenko, S. V. Kartsev, S. A. Velichko, Yu. A. Kuznetsov, O. A. Sharaya, M. A. Markov, and A. D. Bykova, “Metallographic study of structure and physicomechanical properties of coatings prepared by plasma methods,” Metallurg, No. 8, 69–76 (2021).
11.
go back to reference A. A. Klopotov, Y. A. Abzaev, O. G. Volokitin, V. A. Vlasov, A. I. Potekaev, Y. F. Ivanov, A. D. Teresov, V. D. Klopotov, M. P. Kalashnikov, and A. V. Chumaevskii, “The use of low-temperature plasma in a combined technology for the formation of wear-resistant boron-containing coatings,” Surface and Coatings Technology, 3 89, 125576 (2020). A. A. Klopotov, Y. A. Abzaev, O. G. Volokitin, V. A. Vlasov, A. I. Potekaev, Y. F. Ivanov, A. D. Teresov, V. D. Klopotov, M. P. Kalashnikov, and A. V. Chumaevskii, “The use of low-temperature plasma in a combined technology for the formation of wear-resistant boron-containing coatings,” Surface and Coatings Technology, 3 89, 125576 (2020).
12.
go back to reference T. Kasiorowski, P. Soares, C. A. Neitzke, R. D. Torres, J. Lin, C. M. Lepienski, and G. B. De Souza, “Microstructural and tribological characterization of Dlc coatings deposited by plasma enhanced techniques on steel substrates,” Surface and Coatings Technology, 125615. T. Kasiorowski, P. Soares, C. A. Neitzke, R. D. Torres, J. Lin, C. M. Lepienski, and G. B. De Souza, “Microstructural and tribological characterization of Dlc coatings deposited by plasma enhanced techniques on steel substrates,” Surface and Coatings Technology, 125615.
13.
go back to reference M. Kulka, N. Makuch, A. Pertek, and A. Piasecki, “Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel,” Optics and Laser Technology, No. 44, 872–881 (2012). M. Kulka, N. Makuch, A. Pertek, and A. Piasecki, “Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel,” Optics and Laser Technology, No. 44, 872–881 (2012).
14.
go back to reference M. Kulka, N. Makuch, and A. Pertek, “Microstructure and properties of laser-borided 41Cr4 steel,” Optics and Laser Technology, No. 45, 308–318 (2013). M. Kulka, N. Makuch, and A. Pertek, “Microstructure and properties of laser-borided 41Cr4 steel,” Optics and Laser Technology, No. 45, 308–318 (2013).
20.
go back to reference M. S. Stepanov and Yu. M. Dombrovskiy, “Deposition of carbide coatings during microarc thermodiffusion tungstenizing of steel,” Inorganic Materials: Applied Research, 9, No. 4, 703–708 2018. CrossRef M. S. Stepanov and Yu. M. Dombrovskiy, “Deposition of carbide coatings during microarc thermodiffusion tungstenizing of steel,” Inorganic Materials: Applied Research, 9, No. 4, 703–708 2018. CrossRef
22.
go back to reference M. S. Stepanov, Y. M. Dombrovskii, and L. V. Davidyan, “Structure, phase composition, mechanical properties and wear resistance of steel after micro-arc borovanadizing,” Izv. Vuz. Chern. Met., 62, No. 6, 446–451 (2019). M. S. Stepanov, Y. M. Dombrovskii, and L. V. Davidyan, “Structure, phase composition, mechanical properties and wear resistance of steel after micro-arc borovanadizing,” Izv. Vuz. Chern. Met., 62, No. 6, 446–451 (2019).
23.
go back to reference Y. M. Dombrovskii, M. S. Stepanov, “Effect of steel micro-arc cementation and boriding o diffusion layer structure,” Izv. Vuz. Chern. Met., 63, No. 11-12, 929–934 (2020). Y. M. Dombrovskii, M. S. Stepanov, “Effect of steel micro-arc cementation and boriding o diffusion layer structure,” Izv. Vuz. Chern. Met., 63, No. 11-12, 929–934 (2020).
25.
go back to reference M. G. Krukovich, B. A. Prusakov, and I. G. Sizov, Borided Layer Ductility [in Russian], FIZMATLIT, Moscow (2010). M. G. Krukovich, B. A. Prusakov, and I. G. Sizov, Borided Layer Ductility [in Russian], FIZMATLIT, Moscow (2010).
Metadata
Title
Influence of Tool Steel Chemical Composition on Structure and Phase Composition of a Diffusion Layer after Microarc Boriding
Authors
Yu. M. Dombrovskii
M. S. Stepanov
Publication date
28-09-2022
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01358-3

Other articles of this Issue 5-6/2022

Metallurgist 5-6/2022 Go to the issue

Premium Partners