Skip to main content
Top

2021 | OriginalPaper | Chapter

Influence of Velocity Slip on the MHD Flow of a Micropolar Fluid Over a Stretching Surface

Authors : P. K. Pattnaik, D. K. Moapatra, S. R. Mishra

Published in: Recent Trends in Applied Mathematics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Free convection of an electrically conducting micropolar fluid past a permeable stretching surface is considered in the present analysis. The crux of the investigation is the study of velocity slip boundary condition that affects the flow behavior. In addition to that the temperature profile enhances with the inclusion of dissipative heat energy, thermal radiation and the heat generation/absorption parameter. Employing suitable similarity variables, the governing equations are transformed to nonlinear ODEs and numerical treatment such as fourth-order Runge-Kutta method in conjunction with shooting technique. Physical behavior of several contributing parameters for the flow phenomena, local skin-friction coefficient, the wall couple stress, and the local Nusselt number are presented via graphs and further described in the results and discussion section.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Crane, Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)CrossRef L. Crane, Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)CrossRef
2.
go back to reference P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)CrossRef P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)CrossRef
3.
go back to reference K. Vajravelu, D. Rollins, Heat transfer in electrically conducting fluid over a stretching sheet. Int. J. Non-Linear Mech. 27, 265–277 (1992)CrossRef K. Vajravelu, D. Rollins, Heat transfer in electrically conducting fluid over a stretching sheet. Int. J. Non-Linear Mech. 27, 265–277 (1992)CrossRef
4.
go back to reference K.B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface. Magn. Gidrodin. 4, 146–147 (1974) K.B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface. Magn. Gidrodin. 4, 146–147 (1974)
5.
go back to reference S. Baag, S.R. Mishra, G.C. Dash, M.R. Acharya, Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction. J. King Saud Univ. – Eng. Sci. 29, 75–83 (2017) S. Baag, S.R. Mishra, G.C. Dash, M.R. Acharya, Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction. J. King Saud Univ. – Eng. Sci. 29, 75–83 (2017)
7.
go back to reference K. Das, Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference. Int. J. Heat Mass Transf. 54, 3505–3513 (2011)CrossRef K. Das, Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference. Int. J. Heat Mass Transf. 54, 3505–3513 (2011)CrossRef
8.
go back to reference M. Fakour, A. Vahabzadeha, D.D. Ganji, M. Hatami, Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J. Mol. Liq. 204, 198–204 (2015)CrossRef M. Fakour, A. Vahabzadeha, D.D. Ganji, M. Hatami, Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J. Mol. Liq. 204, 198–204 (2015)CrossRef
9.
go back to reference M.D. Shamshuddin1, P.V. SatyaNarayana, Primary and secondary flows on unsteady mhd free convective micropolar fluid flow past an inclined plate in a rotating system: a finite element analysis. FDMP14 (1), 57–86 (2018) M.D. Shamshuddin1, P.V. SatyaNarayana, Primary and secondary flows on unsteady mhd free convective micropolar fluid flow past an inclined plate in a rotating system: a finite element analysis. FDMP14 (1), 57–86 (2018)
10.
go back to reference A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Comput. Math. Appl. 56, 3188–3194 (2008)MathSciNetCrossRef A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Comput. Math. Appl. 56, 3188–3194 (2008)MathSciNetCrossRef
11.
go back to reference M. Nazeer, N. Ali and T. Javed, Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform/non-uniform heated bottom wall. Can. J. Phys. 1–37 (2017) M. Nazeer, N. Ali and T. Javed, Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform/non-uniform heated bottom wall. Can. J. Phys. 1–37 (2017)
13.
go back to reference M. Sheikholeslami, M. Hatami, D.D. Ganji, Micropolar fluid flow and heat transfer in a permeable channel using analytical method. J. Mol. Liq. 194, 30–36 (2014)CrossRef M. Sheikholeslami, M. Hatami, D.D. Ganji, Micropolar fluid flow and heat transfer in a permeable channel using analytical method. J. Mol. Liq. 194, 30–36 (2014)CrossRef
14.
go back to reference S.R. Sheri, Md Shamshuddin, Heat and mass transfer on MHD flow of micropolar fluid in the presence of viscous dissipation and chemical reaction. Proceedia Eng. 127, 885–892 (2015) S.R. Sheri, Md Shamshuddin, Heat and mass transfer on MHD flow of micropolar fluid in the presence of viscous dissipation and chemical reaction. Proceedia Eng. 127, 885–892 (2015)
17.
go back to reference S.R. Mishra, P.K. Pattnaik, G.C. Dash, Effect of heat source and double stratification on MHD free convection in a micropolar fluid. Alex. Eng. J. 54, 681–689 (2015)CrossRef S.R. Mishra, P.K. Pattnaik, G.C. Dash, Effect of heat source and double stratification on MHD free convection in a micropolar fluid. Alex. Eng. J. 54, 681–689 (2015)CrossRef
18.
go back to reference E.A. Ashmawy, Fully developed natural convective micropolar fluid flow in a vertical channel with slip. J. Egypt. Math. Soc. 23, 563–567 (2015)MathSciNetCrossRef E.A. Ashmawy, Fully developed natural convective micropolar fluid flow in a vertical channel with slip. J. Egypt. Math. Soc. 23, 563–567 (2015)MathSciNetCrossRef
19.
go back to reference M. Ferdows, D. Liu, Natural convective flow of a magneto-micropolar fluid along a vertical plate. Propuls. Power Res. 7(1), 43–51 (2018)CrossRef M. Ferdows, D. Liu, Natural convective flow of a magneto-micropolar fluid along a vertical plate. Propuls. Power Res. 7(1), 43–51 (2018)CrossRef
20.
go back to reference F.P. Foraboschi, I.D. Federico, Heat transfer in a laminar flow of non- Newtonian heat generating fluids. Int. J. Heat Mass Transf. 7, 315–318 (1964)CrossRef F.P. Foraboschi, I.D. Federico, Heat transfer in a laminar flow of non- Newtonian heat generating fluids. Int. J. Heat Mass Transf. 7, 315–318 (1964)CrossRef
21.
go back to reference M.A.A. Mahmoud, S.E. Waheed, MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J. Egypt. Math. Soc. 20, 20–27 (2012)MathSciNetCrossRef M.A.A. Mahmoud, S.E. Waheed, MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity. J. Egypt. Math. Soc. 20, 20–27 (2012)MathSciNetCrossRef
22.
go back to reference S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convective flow of a thermomicropolar fluid past a nonisother-mal vertical plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)CrossRef S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convective flow of a thermomicropolar fluid past a nonisother-mal vertical plate. Int. J. Eng. Sci. 19, 1431–1439 (1981)CrossRef
23.
go back to reference G. Ahmadi, Self-similar solution of incompressible micro-polar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)CrossRef G. Ahmadi, Self-similar solution of incompressible micro-polar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)CrossRef
24.
go back to reference J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow. Int. J. Eng. Sci. 10, 23–32 (1972)CrossRef J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow. Int. J. Eng. Sci. 10, 23–32 (1972)CrossRef
25.
Metadata
Title
Influence of Velocity Slip on the MHD Flow of a Micropolar Fluid Over a Stretching Surface
Authors
P. K. Pattnaik
D. K. Moapatra
S. R. Mishra
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9817-3_21

Premium Partners