Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Metallurgical and Materials Transactions A 2/2021

02-11-2020

Influences of Vanadium and Silicon on Case Hardness and Residual Stress of Nitrided Medium Carbon Steels

Authors: Jonah Klemm-Toole, Michael Burnett, Amy J. Clarke, John G. Speer, Kip O. Findley

Published in: Metallurgical and Materials Transactions A | Issue 2/2021

Login to get access
share
SHARE

Abstract

Medium carbon steels alloyed with two levels each of V and Si were heat treated to form tempered martensite and bainite, followed by nitriding to evaluate their effects on case hardness and residual stress. Microstructures were quantitatively characterized with Vickers microhardness testing, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD), conventional transmission electron microscopy (CTEM), and scanning transmission electron microscopy (STEM). Measurements of subgrain size, cementite size, dislocation density, and volume fractions of nitride precipitates were combined in a strength model to predict the contributions of V and Si to maximum case hardness after nitriding. Higher V contents lead to increases in maximum case hardness by increasing the volume fraction of MX precipitates. Increases in Si content lead to increased maximum case hardness by increasing the volume fraction of amorphous (Si and Mn)-containing nitride precipitates; the presence of Mn in these precipitates has not been previously reported. Higher Si contents also lead to increases in solid solution strengthening because the majority of Si remains in solution in the ferrite matrix. Greater volume fractions of MX and (Si and Mn)-containing nitrides both lead to higher magnitudes of compressive residual stress. The results presented here demonstrate that alloying can improve the properties after nitriding, providing insight into advanced nitriding steel grades and potentially enabling a wider range of steel microstructures to be nitrided without a debit in performance.
Literature
1.
go back to reference [1]F.C. Campbell: Fatigue and Fracture – Understanding the Basics, ASM International, Materials Park, OH, 2012, pp. 201-202. [1]F.C. Campbell: Fatigue and Fracture – Understanding the Basics, ASM International, Materials Park, OH, 2012, pp. 201-202.
2.
go back to reference [2]J.R. Davis: Surface Hardening of Steels - Understanding the Basics, ASM International, Materials Park, OH, 2002, pp. 141-194. [2]J.R. Davis: Surface Hardening of Steels - Understanding the Basics, ASM International, Materials Park, OH, 2002, pp. 141-194.
3.
go back to reference [3]D. Pye: Practical Nitriding and Ferritic Nitrocarburizing, ASM International, Materials Park, OH, 2003, pp. 13-14. [3]D. Pye: Practical Nitriding and Ferritic Nitrocarburizing, ASM International, Materials Park, OH, 2003, pp. 13-14.
4.
go back to reference G. Miyamoto and T. Furuhara, Proceedings of the International Symposium of Steel Science, 2012, pp. 51–57. G. Miyamoto and T. Furuhara, Proceedings of the International Symposium of Steel Science, 2012, pp. 51–57.
5.
go back to reference [5]G. Miyamoto, Y. Tomio, T. Furuhara, and T. Maki, Mater. Sci. Forum, 2005, vol. 492-493, pp. 539-544. [5]G. Miyamoto, Y. Tomio, T. Furuhara, and T. Maki, Mater. Sci. Forum, 2005, vol. 492-493, pp. 539-544.
6.
go back to reference [6]G. Miyamoto, Y. Tomio, H. Aota, K. Oh-ishi, K. Hono, and T. Furuhara, Mater. Sci. Technol., 2011, vol. 27, no. 4, pp. 742-746. [6]G. Miyamoto, Y. Tomio, H. Aota, K. Oh-ishi, K. Hono, and T. Furuhara, Mater. Sci. Technol., 2011, vol. 27, no. 4, pp. 742-746.
7.
go back to reference [7]Y. Tomio, S. Kitsuya, K. Oh-Ishi, K. Hono, G. Miyamoto, and T. Furuhara, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 239-249. [7]Y. Tomio, S. Kitsuya, K. Oh-Ishi, K. Hono, G. Miyamoto, and T. Furuhara, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 239-249.
8.
go back to reference [8]A.R. Clauss, E. Bischoff, S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1923-1934. [8]A.R. Clauss, E. Bischoff, S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1923-1934.
9.
go back to reference [9]R.E. Schacherl and E.J. Mittemeijer, Mater. Sci. Forum, 2012, vol. 706-709, pp. 2583-2588. [9]R.E. Schacherl and E.J. Mittemeijer, Mater. Sci. Forum, 2012, vol. 706-709, pp. 2583-2588.
10.
go back to reference [10]G. Miyamoto, S. Suetsugu, K. Shinbo, T. Furuhara, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5011-5020. [10]G. Miyamoto, S. Suetsugu, K. Shinbo, T. Furuhara, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5011-5020.
11.
go back to reference [11]K.S. Jung, S.R. Meka, R.E. Schacherl, E. Bischoff, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 934-944. [11]K.S. Jung, S.R. Meka, R.E. Schacherl, E. Bischoff, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 934-944.
12.
go back to reference [12]C.W. Kang, S.R. Meka, R.E. Schacherl, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 328-336. [12]C.W. Kang, S.R. Meka, R.E. Schacherl, and E.J. Mittemeijer, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 328-336.
13.
go back to reference [13]R. Urao, S. Kitagawa, K. Nakagawa, and M. Suwa, J. Surf. Finish. Soc. Jpn., 1990, vol. 14, no. 5, pp. 566-569. [13]R. Urao, S. Kitagawa, K. Nakagawa, and M. Suwa, J. Surf. Finish. Soc. Jpn., 1990, vol. 14, no. 5, pp. 566-569.
14.
go back to reference B. Schwarz, S.R. Meka, R.E. Schacherl, E. Bischoff, and E.J. Mittemeijer, Acta Mater., 2014, no. 76, pp. 394–403. B. Schwarz, S.R. Meka, R.E. Schacherl, E. Bischoff, and E.J. Mittemeijer, Acta Mater., 2014, no. 76, pp. 394–403.
15.
go back to reference J. Klemm-Toole, K.O. Findley, R. Cryderman, and M. Burnett, Advances in Metallurgy of Long and Forged Products, 2015, pp. 261–73. J. Klemm-Toole, K.O. Findley, R. Cryderman, and M. Burnett, Advances in Metallurgy of Long and Forged Products, 2015, pp. 261–73.
16.
go back to reference [16]E.J. Mittemeijer, M.H. Biglari, A.J. Bottger, N.M. van der Pers, W.G. Sloof, and F.D. Tichelaar, Scripta Mater., 1999, vol. 41, no. 6, pp. 625-630. [16]E.J. Mittemeijer, M.H. Biglari, A.J. Bottger, N.M. van der Pers, W.G. Sloof, and F.D. Tichelaar, Scripta Mater., 1999, vol. 41, no. 6, pp. 625-630.
17.
go back to reference [17]H.P. Van Landeghem, M. Goune, S. Bordere, F. Danoix, and A. Redjaimia, Acta Mater., 2015, vol. 93, pp. 218-234. [17]H.P. Van Landeghem, M. Goune, S. Bordere, F. Danoix, and A. Redjaimia, Acta Mater., 2015, vol. 93, pp. 218-234.
18.
go back to reference [18]R. Benedictus, A. Bottger, and E.J. Mittemeijer, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no.13, pp. 9109-9125. [18]R. Benedictus, A. Bottger, and E.J. Mittemeijer, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no.13, pp. 9109-9125.
19.
go back to reference [19]R.M.M. Riofano, L.C. Casteletti, and P.A.P. Nascente, J. Mater. Eng. Perform., 2005, vol. 14, no. 1, pp. 75-84. [19]R.M.M. Riofano, L.C. Casteletti, and P.A.P. Nascente, J. Mater. Eng. Perform., 2005, vol. 14, no. 1, pp. 75-84.
20.
go back to reference [20]T. Takase, Y. Nakamura, and Y. Takada, J. Cast. Mater., 1973, vol. 46, no. 5, pp. 415-421. [20]T. Takase, Y. Nakamura, and Y. Takada, J. Cast. Mater., 1973, vol. 46, no. 5, pp. 415-421.
21.
go back to reference B.C. De Cooman and J.G. Speer: Fundamentals of Steel Product Metallurgy, AIST, Warrendale, PA, 2011, p. 40, 142, 270, 299–302. B.C. De Cooman and J.G. Speer: Fundamentals of Steel Product Metallurgy, AIST, Warrendale, PA, 2011, p. 40, 142, 270, 299–302.
22.
go back to reference [22]L.M. Rothleutner, R. Cryderman, and C.J. Van Tyne, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4594-4609. [22]L.M. Rothleutner, R. Cryderman, and C.J. Van Tyne, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4594-4609.
23.
go back to reference [23]J. Klemm-Toole, J. Benz, S.W. Thompson, K.O. Findley, Mater. Sci. Eng. A, 2019, vol. 763, no. 138145, pp. 1-12. [23]J. Klemm-Toole, J. Benz, S.W. Thompson, K.O. Findley, Mater. Sci. Eng. A, 2019, vol. 763, no. 138145, pp. 1-12.
24.
go back to reference [24]T.N. Baker, Mater. Sci. Technol., 2009, vol. 25, no. 9, pp. 1083-1107. [24]T.N. Baker, Mater. Sci. Technol., 2009, vol. 25, no. 9, pp. 1083-1107.
25.
go back to reference [25]B. Fultz and J.M. Howe: Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed., Springer, New York, NY, 2008, pp. 307-309. [25]B. Fultz and J.M. Howe: Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed., Springer, New York, NY, 2008, pp. 307-309.
26.
go back to reference [26]I. Viera, J. Klemm-Toole, E. Buchner, D.L. Williamson, K.O. Findley, and E. De Moor, Sci. Rep., 2017, vol. 7, no. 17337, pp. 1-14. [26]I. Viera, J. Klemm-Toole, E. Buchner, D.L. Williamson, K.O. Findley, and E. De Moor, Sci. Rep., 2017, vol. 7, no. 17337, pp. 1-14.
27.
go back to reference [27]F. HajyAkbary, J. Sietsma, A.J. Böttger, and M. Santofimia, Mater. Sci. Eng. A, 2015, vol. 639, pp. 208-218. [27]F. HajyAkbary, J. Sietsma, A.J. Böttger, and M. Santofimia, Mater. Sci. Eng. A, 2015, vol. 639, pp. 208-218.
28.
go back to reference [28]B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3 rd ed., Prentice Hall, Upper Saddle River, NJ, 2001, pp. 439-459. [28]B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3 rd ed., Prentice Hall, Upper Saddle River, NJ, 2001, pp. 439-459.
29.
go back to reference [29]K. Genel, M. Demirkol, and M. Capa, Mater. Sci. Eng. A, 2000, vol. A279, pp. 207-216. [29]K. Genel, M. Demirkol, and M. Capa, Mater. Sci. Eng. A, 2000, vol. A279, pp. 207-216.
30.
go back to reference E. Troell, S. Haglund, and N. Hawsho, Quenching Control and Distortion Conference, 2012, pp. 785–91. E. Troell, S. Haglund, and N. Hawsho, Quenching Control and Distortion Conference, 2012, pp. 785–91.
31.
go back to reference [31]B.K. Jones, and J.W. Martin, Mater. Sci. Technol., 1977, vol. 4, no. 1, pp. 520-523. [31]B.K. Jones, and J.W. Martin, Mater. Sci. Technol., 1977, vol. 4, no. 1, pp. 520-523.
32.
go back to reference C.W. Kang, S.R. Meka, T. Steiner, R.E. Schacherl, and E.J. Mittemeijer, HTM J. Heat. Treat. Mater., 2016, vol. 17, pp. 181-190. C.W. Kang, S.R. Meka, T. Steiner, R.E. Schacherl, and E.J. Mittemeijer, HTM J. Heat. Treat. Mater., 2016, vol. 17, pp. 181-190.
33.
go back to reference [33]L.C. Chang, Mater. Sci. Eng. A, 2004, vol. A368, pp. 175-182. [33]L.C. Chang, Mater. Sci. Eng. A, 2004, vol. A368, pp. 175-182.
34.
go back to reference [34]V.T.T. Miihkinen and D.V. Edmonds, Mater. Sci. Technol., 1987, vol. 3, pp. 422-431. [34]V.T.T. Miihkinen and D.V. Edmonds, Mater. Sci. Technol., 1987, vol. 3, pp. 422-431.
35.
go back to reference K.J. Irvine and F.B. Pickering, Proceedings of the Joint Conference of the British Iron and Steel Research Association and the Iron and Steel Institute, 1965, pp. 110–25. K.J. Irvine and F.B. Pickering, Proceedings of the Joint Conference of the British Iron and Steel Research Association and the Iron and Steel Institute, 1965, pp. 110–25.
36.
go back to reference [36]B.P.J. Sandvick and H.P. Nevalainen, Met. Technol., 1981, vol. 8, no. 1, pp. 213-220. [36]B.P.J. Sandvick and H.P. Nevalainen, Met. Technol., 1981, vol. 8, no. 1, pp. 213-220.
37.
go back to reference [37]J. Klemm-Toole, J. Benz, I. Vieira, A.J. Clarke, S.W. Thompson, and K.O. Findley, Mater. Sci. Eng. A, 2020, vol. 786, no. 139419, pp. 1-13. [37]J. Klemm-Toole, J. Benz, I. Vieira, A.J. Clarke, S.W. Thompson, and K.O. Findley, Mater. Sci. Eng. A, 2020, vol. 786, no. 139419, pp. 1-13.
38.
go back to reference B. Kim, E. Boucard, T. Sourmail, D. SanMartin, N. Gey, and P.E.J Rivera, Acta Mater., 2014, vol. 68, pp. 169-178. B. Kim, E. Boucard, T. Sourmail, D. SanMartin, N. Gey, and P.E.J Rivera, Acta Mater., 2014, vol. 68, pp. 169-178.
39.
go back to reference [39]G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki, Acta Mater., 2007, vol. 55, pp. 5078-5038. [39]G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki, Acta Mater., 2007, vol. 55, pp. 5078-5038.
40.
go back to reference [40]R.W.K. Honeycombe and F.B. Pickering, Metall. Trans., 1972, vol. 3, pp. 1099-1112. [40]R.W.K. Honeycombe and F.B. Pickering, Metall. Trans., 1972, vol. 3, pp. 1099-1112.
41.
go back to reference [41]D.V. Edmonds and R.C. Cochrane, Metall. Trans., 1990, vol. 21A, pp. 1527-1540. [41]D.V. Edmonds and R.C. Cochrane, Metall. Trans., 1990, vol. 21A, pp. 1527-1540.
42.
go back to reference [42]T. Gladman, “Precipitation Hardening in Metals,” Mater. Sci. Technol., 1999, vol. 15, pp. 30-36. [42]T. Gladman, “Precipitation Hardening in Metals,” Mater. Sci. Technol., 1999, vol. 15, pp. 30-36.
43.
go back to reference [43]E. Nes, K. Marthinsen, and B. Holmedal, Mater. Sci. Technol., 2004, vol. 20, pp. 1377-1382. [43]E. Nes, K. Marthinsen, and B. Holmedal, Mater. Sci. Technol., 2004, vol. 20, pp. 1377-1382.
44.
go back to reference [44]J. Daigne, M. Guttman, J.P. Naylor, Mater. Sci. Eng., 1982, vol. 56, pp. 1-10. [44]J. Daigne, M. Guttman, J.P. Naylor, Mater. Sci. Eng., 1982, vol. 56, pp. 1-10.
45.
go back to reference [45]S. Maropoulos, J.D.H. Paul, N. Ridley, Mater. Sci. Technol., 1993, vol. 9, pp. 1014-1019. [45]S. Maropoulos, J.D.H. Paul, N. Ridley, Mater. Sci. Technol., 1993, vol. 9, pp. 1014-1019.
46.
go back to reference [46]M. Meyers and K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, New York, NY, 2009, p. 221. [46]M. Meyers and K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, New York, NY, 2009, p. 221.
47.
go back to reference [47]T.J. Koppenaal and D. Kuhlmann-Wilsdorf, Appl. Phys. Lett., 1964, vol. 4, no. 3, pp. 59-61. [47]T.J. Koppenaal and D. Kuhlmann-Wilsdorf, Appl. Phys. Lett., 1964, vol. 4, no. 3, pp. 59-61.
48.
go back to reference [48]M. Akhlaghi, T. Steiner, S.R. Meka, A. Leineweber, and E.J. Mittemeijer, Acta Mater., 2015, vol. 98, pp. 254-262. [48]M. Akhlaghi, T. Steiner, S.R. Meka, A. Leineweber, and E.J. Mittemeijer, Acta Mater., 2015, vol. 98, pp. 254-262.
49.
go back to reference [49]T. Steiner and E.J. Mittemeijer, J. Mater. Eng. Perform., 2016, vol. 25, no. 6, pp. 2091-2102. [49]T. Steiner and E.J. Mittemeijer, J. Mater. Eng. Perform., 2016, vol. 25, no. 6, pp. 2091-2102.
50.
go back to reference [50]T. Steiner, M. Akhlaghi, S.R. Meka, and E.J. Mittemeijer, J Mater. Sci., 2015, vol. 50, pp. 7075-7086. [50]T. Steiner, M. Akhlaghi, S.R. Meka, and E.J. Mittemeijer, J Mater. Sci., 2015, vol. 50, pp. 7075-7086.
51.
go back to reference [51]B.M. Korevaar, S. Coorens, Y. Fu, J. Sietsma, and S. Van der Zwaag, Mater. Sci. Technol., 2001, vol.17, pp. 54-62. [51]B.M. Korevaar, S. Coorens, Y. Fu, J. Sietsma, and S. Van der Zwaag, Mater. Sci. Technol., 2001, vol.17, pp. 54-62.
Metadata
Title
Influences of Vanadium and Silicon on Case Hardness and Residual Stress of Nitrided Medium Carbon Steels
Authors
Jonah Klemm-Toole
Michael Burnett
Amy J. Clarke
John G. Speer
Kip O. Findley
Publication date
02-11-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06063-x

Other articles of this Issue 2/2021

Metallurgical and Materials Transactions A 2/2021 Go to the issue

Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses

Machine Learning Approach to Design High Entropy Alloys with Heterogeneous Grain Structures

Premium Partners