Skip to main content
Top
Published in:

2014 | OriginalPaper | Chapter

1. Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology

Authors : Jonathan Blakes, Jamie Twycross, Savas Konur, Francisco Jose Romero-Campero, Natalio Krasnogor, Marian Gheorghe

Published in: Applications of Membrane Computing in Systems and Synthetic Biology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter gives an overview of an integrated software suite, the Infobiotics Workbench, which is based on a novel spatial discrete-stochastic P systems modelling framework. The Workbench incorporates three important features, simulation, model checking and optimisation. Its capability for building, analysing and optimising large spatially discrete and stochastic models of multicellular systems makes it a useful, coherent and comprehensive in silico tool in systems and synthetic biology research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
2
The \(\mathbf{P}_{\sim r}\) operator is the probabilistic counter-part of path-quantifiers \(\forall \) and \(\exists \) of CTL.
 
3
At the moment, the NLQ tool is not integrated into the Infobiotics Workbench. But, the properties it generates can be directly used in IBW’s model checking component.
 
Literature
1.
go back to reference U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)CrossRef U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)CrossRef
2.
go back to reference R. Alur, T. Henzinger, Reactive modules. Formal Methods Syst. Des. 15, 7–48 (1999)CrossRef R. Alur, T. Henzinger, Reactive modules. Formal Methods Syst. Des. 15, 7–48 (1999)CrossRef
3.
go back to reference C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29, 524–541 (2003)CrossRef C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29, 524–541 (2003)CrossRef
4.
go back to reference S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)CrossRef S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)CrossRef
5.
go back to reference S. Basu, R. Mehreja, S. Thiberge, M.-T. Chen, R. Weiss, Spatiotemporal control of gene expression with pulse-generating networks. PNAS 101(17), 6355–6360 (2004)CrossRef S. Basu, R. Mehreja, S. Thiberge, M.-T. Chen, R. Weiss, Spatiotemporal control of gene expression with pulse-generating networks. PNAS 101(17), 6355–6360 (2004)CrossRef
6.
go back to reference F. Bernardini, M. Gheorghe, F. Romero-Campero, N. Walkinshaw, A hybrid approach to modelling biological systems, in Proceedings of 8th Workshop on Membrane Computing, vol. 4860 (LNCS/Springer, 2007), pp. 138–159 F. Bernardini, M. Gheorghe, F. Romero-Campero, N. Walkinshaw, A hybrid approach to modelling biological systems, in Proceedings of 8th Workshop on Membrane Computing, vol. 4860 (LNCS/Springer, 2007), pp. 138–159
7.
go back to reference D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare : a software for the modeling, simulation and analysis of biological systems, in CMC 2010, vol. 6501 (LNCS/Springer, 2010), pp. 119–143 D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare : a software for the modeling, simulation and analysis of biological systems, in CMC 2010, vol. 6501 (LNCS/Springer, 2010), pp. 119–143
8.
go back to reference D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare: a P systems-based simulation environment for biological systems, in 11th International Conference on Membrane Computing 2010, vol. 6501 (LNCS, 2010), pp. 119–143 D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare: a P systems-based simulation environment for biological systems, in 11th International Conference on Membrane Computing 2010, vol. 6501 (LNCS, 2010), pp. 119–143
9.
go back to reference D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Modelling metapopulations with stochastic membrane systems. Biosystems 91(3), 499–514 (2008)CrossRef D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Modelling metapopulations with stochastic membrane systems. Biosystems 91(3), 499–514 (2008)CrossRef
10.
go back to reference D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo, E. Martegani, The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinf. Syst. Biol. 2012, 10 (2012)CrossRef D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo, E. Martegani, The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinf. Syst. Biol. 2012, 10 (2012)CrossRef
11.
go back to reference L. Bianco, A. Castellini, Psim: a computational platform for metabolic P systems, in Workshop on Membrane Computing (2007), pp. 1–20 L. Bianco, A. Castellini, Psim: a computational platform for metabolic P systems, in Workshop on Membrane Computing (2007), pp. 1–20
13.
go back to reference J. Blakes, Infobiotics: computer-aided synthetic systems biology. Ph.D. thesis, School of Computer Science, University of Nottingham, UK, 2012 J. Blakes, Infobiotics: computer-aided synthetic systems biology. Ph.D. thesis, School of Computer Science, University of Nottingham, UK, 2012
14.
go back to reference J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The infobiotics workbench: an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 27(23), 3323–3324 (2011)CrossRef J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The infobiotics workbench: an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 27(23), 3323–3324 (2011)CrossRef
15.
go back to reference M. Calder, A. Duguid, S. Gilmore, J. Hillston, Stronger computational modelling of signalling pathways using both continuous and discrete-state methods, in Proceedings of CMSB 2006, vol. 4210 (LNCS, 2006), pp. 63–77 M. Calder, A. Duguid, S. Gilmore, J. Hillston, Stronger computational modelling of signalling pathways using both continuous and discrete-state methods, in Proceedings of CMSB 2006, vol. 4210 (LNCS, 2006), pp. 63–77
16.
go back to reference M. Calder, S. Gilmore, J. Hillston, Automatically deriving ODEs from process algebra models of signalling pathways, in Proceedings of CMSB 2005, Edinburgh. Scotland (2005), pp. 204–215 M. Calder, S. Gilmore, J. Hillston, Automatically deriving ODEs from process algebra models of signalling pathways, in Proceedings of CMSB 2005, Edinburgh. Scotland (2005), pp. 204–215
17.
go back to reference M. Calder, S. Gilmore, J. Hillston, Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA, in Transactions on Computational Systems Biology VII, vol. 4230 of Lecture Notes in Computer Science, ed. by C. Priami, A. Inglfsdttir, B. Mishra, H. Riis Nielson (Springer, Berlin Heidelberg, 2006), pp. 1–23 M. Calder, S. Gilmore, J. Hillston, Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA, in Transactions on Computational Systems Biology VII, vol. 4230 of Lecture Notes in Computer Science, ed. by C. Priami, A. Inglfsdttir, B. Mishra, H. Riis Nielson (Springer, Berlin Heidelberg, 2006), pp. 1–23
18.
go back to reference M. Calder, S. Gilmore, J. Hillston, V. Vyshemirsky, Formal methods for biochemical signalling pathways, in Formal Methods: State of the Art and New Directions (Springer, Berlin, 2006), pp. 185–215 M. Calder, S. Gilmore, J. Hillston, V. Vyshemirsky, Formal methods for biochemical signalling pathways, in Formal Methods: State of the Art and New Directions (Springer, Berlin, 2006), pp. 185–215
19.
go back to reference B. Canton, A. Labno, D. Endy, Refine and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26(7), 787–793 (2008)CrossRef B. Canton, A. Labno, D. Endy, Refine and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26(7), 787–793 (2008)CrossRef
20.
go back to reference H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor, Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)CrossRef H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor, Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)CrossRef
21.
go back to reference Y. Cao, D.T. Gillespie, L.R. Petzold, Adaptive explicit–implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126(22), 224101 (2007)CrossRef Y. Cao, D.T. Gillespie, L.R. Petzold, Adaptive explicit–implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126(22), 224101 (2007)CrossRef
22.
go back to reference Y. Cao, L. Petzold, Slow scale tau-leaping method. Comput. Methods Appl. Mech. Eng. 197, 43–44 (2008)MathSciNet Y. Cao, L. Petzold, Slow scale tau-leaping method. Comput. Methods Appl. Mech. Eng. 197, 43–44 (2008)MathSciNet
23.
go back to reference M. Cavaliere, T. Mazza, S. Sedwards, Statistical model checking of membrane systems with peripheral proteins: quantifying the role of estrogen in cellular mitosis and DNA damage, in Applications of Membrane Systems to Biology, Emergence, Complexity and Computation, ed. by P. Frisco, M. Gheorghe, M. Pérez-Jiménez (Springer, 2013) M. Cavaliere, T. Mazza, S. Sedwards, Statistical model checking of membrane systems with peripheral proteins: quantifying the role of estrogen in cellular mitosis and DNA damage, in Applications of Membrane Systems to Biology, Emergence, Complexity and Computation, ed. by P. Frisco, M. Gheorghe, M. Pérez-Jiménez (Springer, 2013)
24.
go back to reference P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation method in P systems, in Workshop on Membrane Computing, vol. 4361 (LNCS, 2006), pp. 298–313 P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation method in P systems, in Workshop on Membrane Computing, vol. 4361 (LNCS, 2006), pp. 298–313
25.
go back to reference F. Ciocchetta, J. Hillston, Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)CrossRefMATHMathSciNet F. Ciocchetta, J. Hillston, Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)CrossRefMATHMathSciNet
26.
go back to reference D. Corne, P. Frisco, Dynamics of HIV infection studied with cellular automata and conformon-P systems. Biosystems 3(91), 531–544 (2008)CrossRef D. Corne, P. Frisco, Dynamics of HIV infection studied with cellular automata and conformon-P systems. Biosystems 3(91), 531–544 (2008)CrossRef
27.
go back to reference V. Danos, J. Feret, W. Fontana, J. Krivine, Scalable modelling of biological pathways, in Asian Symposium on Programming Systems, vol. 4807 (LNCS, 2007), pp. 139–157 V. Danos, J. Feret, W. Fontana, J. Krivine, Scalable modelling of biological pathways, in Asian Symposium on Programming Systems, vol. 4807 (LNCS, 2007), pp. 139–157
28.
go back to reference M.A.M. del Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.R.-N. Nez, F. Sancho-Caparrini, A formal verification algorithm for multienvironment probabilistic P systems. Int. J. Found. Comput. Sci. 22(1), 107–118 (2011)CrossRefMATH M.A.M. del Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.R.-N. Nez, F. Sancho-Caparrini, A formal verification algorithm for multienvironment probabilistic P systems. Int. J. Found. Comput. Sci. 22(1), 107–118 (2011)CrossRefMATH
29.
go back to reference L. Dematté, C. Priami, A. Romanel, The beta workbench: a computational tool to study the dynamics of biological systems. Brief. Bioinform. 9(5), 437–449 (2008)CrossRef L. Dematté, C. Priami, A. Romanel, The beta workbench: a computational tool to study the dynamics of biological systems. Brief. Bioinform. 9(5), 437–449 (2008)CrossRef
30.
go back to reference L. Dematté, C. Priami, A. Romanel, The BlenX language: a tutorial, in Formal Methods for Computational Systems Biology, SFM 2008, vol. 5054 (LNCS, 2008), pp. 123–138 L. Dematté, C. Priami, A. Romanel, The BlenX language: a tutorial, in Formal Methods for Computational Systems Biology, SFM 2008, vol. 5054 (LNCS, 2008), pp. 123–138
31.
go back to reference A. Deutsch, S. Dromann, Cellular Automata Modeling of Biological Pattern Formation (Springer, Heidelberg, 2009) A. Deutsch, S. Dromann, Cellular Automata Modeling of Biological Pattern Formation (Springer, Heidelberg, 2009)
32.
go back to reference M. J. Dinneen, Y.-B. Kim, R. Nicolescu, Edge- and node-disjoint paths in P systems, in Proceedings 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010), ed. by M.K.G. Ciobanu, vol. 40 (EPTCS, 2010), pp. 121–141 M. J. Dinneen, Y.-B. Kim, R. Nicolescu, Edge- and node-disjoint paths in P systems, in Proceedings 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010), ed. by M.K.G. Ciobanu, vol. 40 (EPTCS, 2010), pp. 121–141
33.
go back to reference R. Donaldson, MC2(PLTLc) Monte Carlo Model Checker for PLTLc properties (2008) R. Donaldson, MC2(PLTLc) Monte Carlo Model Checker for PLTLc properties (2008)
34.
go back to reference R. Donaldson, D. Gilbert, A, Model checking approach, to the parameter estimation of biochemical pathways, in CMSB 2008, vol. 5307 (LNBI, Springer-Verlag, 2008), pp. 269–287 R. Donaldson, D. Gilbert, A, Model checking approach, to the parameter estimation of biochemical pathways, in CMSB 2008, vol. 5307 (LNBI, Springer-Verlag, 2008), pp. 269–287
35.
go back to reference R. Donaldson, D. Gilbert, A Monte Carlo Model Checker for probabilistic LTL with numerical constraints. Technical report, Bioinformatics Research Centre, University of Glasgow, Glasgow, 2008 R. Donaldson, D. Gilbert, A Monte Carlo Model Checker for probabilistic LTL with numerical constraints. Technical report, Bioinformatics Research Centre, University of Glasgow, Glasgow, 2008
36.
go back to reference C. Dragomir, From P systems specification to prism. Master’s thesis, Department of Computer Science, University of Sheffield, Sheffield, UK, 2009 C. Dragomir, From P systems specification to prism. Master’s thesis, Department of Computer Science, University of Sheffield, Sheffield, UK, 2009
37.
go back to reference M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications for finite-state verification, in Proceedings of the 21st international conference on Software engineering, ICSE ’99 (ACM, 1999), pp. 411–420 M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications for finite-state verification, in Proceedings of the 21st international conference on Software engineering, ICSE ’99 (ACM, 1999), pp. 411–420
38.
go back to reference J. Elf, M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1(2), 230–236 (2004)CrossRef J. Elf, M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1(2), 230–236 (2004)CrossRef
39.
go back to reference G.B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to biology. J. Theor. Biol. 160, 97–133 (1993)CrossRef G.B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to biology. J. Theor. Biol. 160, 97–133 (1993)CrossRef
40.
go back to reference J.R. Faeder, M.L. Blinov, W.S. Hlavacek, Rule-based modeling of biochemical systems with BioNetGen, in Methods in Molecular Biology, Systems Biology, vol. 500 of Methods in Molecular Biology, ed. by I.V. Maly (Humana Press, Totowa, 2009), pp. 113–167 J.R. Faeder, M.L. Blinov, W.S. Hlavacek, Rule-based modeling of biochemical systems with BioNetGen, in Methods in Molecular Biology, Systems Biology, vol. 500 of Methods in Molecular Biology, ed. by I.V. Maly (Humana Press, Totowa, 2009), pp. 113–167
41.
go back to reference A. Feiglin, A. Hacohen, A. Sarusi, J. Fisher, R. Unger, Y. Ofran, Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics 28(21), 2811–2818 (2012)CrossRef A. Feiglin, A. Hacohen, A. Sarusi, J. Fisher, R. Unger, Y. Ofran, Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics 28(21), 2811–2818 (2012)CrossRef
42.
go back to reference J. Fisher, T. Henzinger, Executable biology, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1675–1682 J. Fisher, T. Henzinger, Executable biology, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1675–1682
43.
go back to reference J. Fisher, T.A. Henzinger, Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRef J. Fisher, T.A. Henzinger, Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)CrossRef
44.
go back to reference J. Fisher, N. Piterman, E.J.A. Hubbard, M.J. Stern, D. Harel, Computational insights into Caenorhabditis elegans vulval development. PNAS 102(6), 1951–1956 (2005)CrossRef J. Fisher, N. Piterman, E.J.A. Hubbard, M.J. Stern, D. Harel, Computational insights into Caenorhabditis elegans vulval development. PNAS 102(6), 1951–1956 (2005)CrossRef
45.
go back to reference D. Florine, J. Santiago, K. Betz, J. Twycross, S.-Y. Park, L. Rodriguez, M. Gonzalez-Guzman, M. Jensen, N. Krasnogor, M. Holdsworth, M. Blackledge, S. Cutler, P. Rodriguez, J. Marquez, A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 30, 4171–4184 (2011)CrossRef D. Florine, J. Santiago, K. Betz, J. Twycross, S.-Y. Park, L. Rodriguez, M. Gonzalez-Guzman, M. Jensen, N. Krasnogor, M. Holdsworth, M. Blackledge, S. Cutler, P. Rodriguez, J. Marquez, A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 30, 4171–4184 (2011)CrossRef
46.
go back to reference P. Frisco, Computing with Cells: Advances in Membrane Computing (Oxford University Press, Oxford, 2009)CrossRef P. Frisco, Computing with Cells: Advances in Membrane Computing (Oxford University Press, Oxford, 2009)CrossRef
47.
go back to reference A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, H. Kitano, Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96(8), 1254–1265 (2008)CrossRef A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, H. Kitano, Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96(8), 1254–1265 (2008)CrossRef
48.
go back to reference M. Galassi, GNU Scientific Library Reference Manual, 3rd edn. (GNU, 2009) M. Galassi, GNU Scientific Library Reference Manual, 3rd edn. (GNU, 2009)
49.
go back to reference Q. Gao, F. Liu, D. Tree, D. Gilbert, Multi-cell modelling using coloured Petri nets applied to planar cell polarity, in Proceedings of the 2nd International Workshop on Biological Processes and Petri Nets (BioPPN2011) (2011), pp. 135–150 Q. Gao, F. Liu, D. Tree, D. Gilbert, Multi-cell modelling using coloured Petri nets applied to planar cell polarity, in Proceedings of the 2nd International Workshop on Biological Processes and Petri Nets (BioPPN2011) (2011), pp. 135–150
50.
go back to reference L. Gerosa, Stochastic process algebras as design and analysis framework for synthetic biology modelling. Master’s thesis, University of Trento, 2007 L. Gerosa, Stochastic process algebras as design and analysis framework for synthetic biology modelling. Master’s thesis, University of Trento, 2007
51.
go back to reference M. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)CrossRef M. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)CrossRef
52.
go back to reference D. Gilbert, H. Fuss, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.J. Kurth, C.S. Downes, W. Dubitzky, Computational methodologies for modelling, analysis and simulation of signalling networks. Brief. Bioinform. 7, 339–353 (2006)CrossRef D. Gilbert, H. Fuss, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.J. Kurth, C.S. Downes, W. Dubitzky, Computational methodologies for modelling, analysis and simulation of signalling networks. Brief. Bioinform. 7, 339–353 (2006)CrossRef
53.
go back to reference D. Gilbert, M. Heiner, S. Lehrack, A unifying framework for modelling and analysing biochemical pathways using Petri nets, in Proceedings of the, international conference on Computational methods in systems biology, CMSB’07 (Springer-Verlag, Berlin, 2007) D. Gilbert, M. Heiner, S. Lehrack, A unifying framework for modelling and analysing biochemical pathways using Petri nets, in Proceedings of the, international conference on Computational methods in systems biology, CMSB’07 (Springer-Verlag, Berlin, 2007)
54.
go back to reference D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)CrossRefMathSciNet D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)CrossRefMathSciNet
55.
go back to reference D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRef
56.
go back to reference D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRef D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRef
57.
go back to reference D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716 (2001)CrossRef D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716 (2001)CrossRef
58.
go back to reference D.T. Gillespie, Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55 (2007)CrossRef D.T. Gillespie, Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55 (2007)CrossRef
59.
go back to reference D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Welsey, Boston, 1989)MATH D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Welsey, Boston, 1989)MATH
60.
go back to reference L. Grunske, Specification patterns for probabilistic quality properties, in Proceedings of the 30th international conference on Software engineering, ICSE ’08 (ACM, 2008), pp. 31–40 L. Grunske, Specification patterns for probabilistic quality properties, in Proceedings of the 30th international conference on Software engineering, ICSE ’08 (ACM, 2008), pp. 31–40
61.
go back to reference M.L. Guerriero, D. Prandi, C. Priami, P. Quaglia, Process calculi abstractions for biology. Technical report, CoSBi (Center for Computational and Systems Biology), Trento, Italy, 2006 M.L. Guerriero, D. Prandi, C. Priami, P. Quaglia, Process calculi abstractions for biology. Technical report, CoSBi (Center for Computational and Systems Biology), Trento, Italy, 2006
62.
go back to reference N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)CrossRef N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)CrossRef
63.
go back to reference H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 102–111 (1994) H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 102–111 (1994)
64.
go back to reference L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402, C47–C52 (1999)CrossRef L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402, C47–C52 (1999)CrossRef
65.
go back to reference M. Heiner, D. Gilbert, R. Donaldson, Petri nets for systems and synthetic biology. Formal Methods Comput. Syst. Biol. 5016, 215–264 (2008)CrossRef M. Heiner, D. Gilbert, R. Donaldson, Petri nets for systems and synthetic biology. Formal Methods Comput. Syst. Biol. 5016, 215–264 (2008)CrossRef
66.
go back to reference T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster, Chemical analog computers for clock frequency control based on P modules, in Proceedings of the 12th International Conference on Membrane Computing, CMC’11 (Springer-Verlag, 2012), pp. 182–202 T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster, Chemical analog computers for clock frequency control based on P modules, in Proceedings of the 12th International Conference on Membrane Computing, CMC’11 (Springer-Verlag, 2012), pp. 182–202
67.
go back to reference T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster, Modelling signalling networks with incomplete information about protein activation states: a P system framework for KaiABC oscillator, in Workshop on Membrane Computing, vol. 5957 (LNCS, 2010), pp. 316–334 T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster, Modelling signalling networks with incomplete information about protein activation states: a P system framework for KaiABC oscillator, in Workshop on Membrane Computing, vol. 5957 (LNCS, 2010), pp. 316–334
68.
go back to reference S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRef S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRef
69.
go back to reference M. Hucka, A. Finney, J. Bornstein, M. Keating, E. Shapiro, J. Matthews, L. Kovitz, J. Schilstra, A. Funahashi, C. Doyle, H. Kitano, Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. 1, 41–53 (2004)CrossRef M. Hucka, A. Finney, J. Bornstein, M. Keating, E. Shapiro, J. Matthews, L. Kovitz, J. Schilstra, A. Funahashi, C. Doyle, H. Kitano, Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. 1, 41–53 (2004)CrossRef
70.
go back to reference J. Jack, A. Păun, Discrete modeling of biochemical signaling with memory enhancement. Trans. Comput. Syst. Biol. 11, 200–215 (2009) J. Jack, A. Păun, Discrete modeling of biochemical signaling with memory enhancement. Trans. Comput. Syst. Biol. 11, 200–215 (2009)
71.
go back to reference K. Jensen, L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems (Springer, Berlin, 2009)CrossRef K. Jensen, L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems (Springer, Berlin, 2009)CrossRef
72.
go back to reference S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRef S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRef
73.
go back to reference S. Konrad, B. Cheng, Real-time specification patterns, in Proceedings of 27th International Conference on Software Engineering (2005), pp. 372–381 S. Konrad, B. Cheng, Real-time specification patterns, in Proceedings of 27th International Conference on Software Engineering (2005), pp. 372–381
74.
go back to reference M. Kwiatkowska, J. Heath, E. Gaffney, Simulation and verification for computational modelling of signalling pathways, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1666–1674 M. Kwiatkowska, J. Heath, E. Gaffney, Simulation and verification for computational modelling of signalling pathways, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1666–1674
75.
go back to reference M. Kwiatkowska, G. Norman, D. Parker, Using probabilistic model checking in systems biology. ACM Sigmetrics Perform. Eval. Rev. 35(4), 14–21 (2008)CrossRef M. Kwiatkowska, G. Norman, D. Parker, Using probabilistic model checking in systems biology. ACM Sigmetrics Perform. Eval. Rev. 35(4), 14–21 (2008)CrossRef
76.
go back to reference M.Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic model checking in practice: case studies with PRISM. Sigmetrics Perform. Eval. Rev. 32(4), 16–21 (2005)CrossRef M.Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic model checking in practice: case studies with PRISM. Sigmetrics Perform. Eval. Rev. 32(4), 16–21 (2005)CrossRef
77.
go back to reference J. C. Lagarias, Point lattices, in Handbook of Combinatorics, vol. 1 (Elsevier, Amsterdam, 1995) J. C. Lagarias, Point lattices, in Handbook of Combinatorics, vol. 1 (Elsevier, Amsterdam, 1995)
78.
go back to reference A. Mallavarapu, M. Thomson, B. Ullian, J. Gunawardena, Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6, 257–270 (2009)CrossRef A. Mallavarapu, M. Thomson, B. Ullian, J. Gunawardena, Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6, 257–270 (2009)CrossRef
79.
81.
go back to reference V. Manca, Infobiotics: Information in Biotic Systems (Springer, Berlin, 2013) V. Manca, Infobiotics: Information in Biotic Systems (Springer, Berlin, 2013)
82.
go back to reference V. Manca, L. Marchetti, Log-gain stoichiometric stepwise regression for MP systems. Int. J. Found. Comput. Sci. 22(01), 97–106 (2011)CrossRefMATHMathSciNet V. Manca, L. Marchetti, Log-gain stoichiometric stepwise regression for MP systems. Int. J. Found. Comput. Sci. 22(01), 97–106 (2011)CrossRefMATHMathSciNet
83.
go back to reference M. Martínez-del Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A. Elster, M. Pérez-Jiménez, Population dynamic P systems on CUDA, in Workshop on Membrane Computing, vol. 7605 (LNCS, 2012), pp. 247–266–313 M. Martínez-del Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A. Elster, M. Pérez-Jiménez, Population dynamic P systems on CUDA, in Workshop on Membrane Computing, vol. 7605 (LNCS, 2012), pp. 247–266–313
86.
go back to reference R. Milner, Communicating and Mobile Systems: \(\pi \) -Calculus (Cambridge University Press, Cambridge, 1999) R. Milner, Communicating and Mobile Systems: \(\pi \) -Calculus (Cambridge University Press, Cambridge, 1999)
87.
go back to reference I.I. Moraru, J.C. Schaff, B.M. Slepchenko, L.L.M. The, virtual cell: an integrated modeling environment for experimental and computational cell biology. Ann. N. Y. Acad. Sci. 971, 595–596 (2002)CrossRef I.I. Moraru, J.C. Schaff, B.M. Slepchenko, L.L.M. The, virtual cell: an integrated modeling environment for experimental and computational cell biology. Ann. N. Y. Acad. Sci. 971, 595–596 (2002)CrossRef
88.
go back to reference S. Natkin, Les Reseaux de Petri Stochastiques et leur Application a lEvaluation des Systemes Informatiques. Ph.D. thesis, CNAM, Paris, France, 1980 S. Natkin, Les Reseaux de Petri Stochastiques et leur Application a lEvaluation des Systemes Informatiques. Ph.D. thesis, CNAM, Paris, France, 1980
89.
go back to reference A. Obtulowicz, Generalized Gandy–Păun–Rozenberg machines for tile systems and cellular automata, in Membrane Computing, vol. 7184 of Lecture Notes in Computer Science, ed. by M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan (Springer, Berlin Heidelberg, 2012), pp. 314–332 A. Obtulowicz, Generalized Gandy–Păun–Rozenberg machines for tile systems and cellular automata, in Membrane Computing, vol. 7184 of Lecture Notes in Computer Science, ed. by M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan (Springer, Berlin Heidelberg, 2012), pp. 314–332
90.
go back to reference Z. Ognjanović, Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Logic Comput. 16(2), 257–285 (2006)CrossRefMATHMathSciNet Z. Ognjanović, Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Logic Comput. 16(2), 257–285 (2006)CrossRefMATHMathSciNet
91.
go back to reference G. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000) G. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
92.
go back to reference G. Păun, F.J. Romero-Campero, Membrane computing as a modeling framework. Cellular systems case studies, in Formal Methods for Computational Systems Biology, vol. 5016 (LNCS, 2008), pp. 168–214 G. Păun, F.J. Romero-Campero, Membrane computing as a modeling framework. Cellular systems case studies, in Formal Methods for Computational Systems Biology, vol. 5016 (LNCS, 2008), pp. 168–214
93.
go back to reference M. Pedersen, A. Phillips, Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface R. Soc. 6(Suppl 4), S437–S450 (2009) M. Pedersen, A. Phillips, Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface R. Soc. 6(Suppl 4), S437–S450 (2009)
94.
go back to reference M. Pedersen, G. D. Plotkin, A language for biochemical systems : design and formal specification, in Transactions on Computational Systems Biology XIIC, ed. by C. Priami, vol. 5945 (LNBI, 2010), pp. 77–145 M. Pedersen, G. D. Plotkin, A language for biochemical systems : design and formal specification, in Transactions on Computational Systems Biology XIIC, ed. by C. Priami, vol. 5945 (LNBI, 2010), pp. 77–145
95.
go back to reference I. Pérez-Hurtado, L. Valencia, M. Pérez-Jiménez, M. Colomer, A. Riscos-Núńez, General purpose software tool for simulating biological phenomena by means of P Systems, in Proceedings of IEEE 5th International Conference BIC-TA 2010, Changsha, China (2010), pp. 637–643 I. Pérez-Hurtado, L. Valencia, M. Pérez-Jiménez, M. Colomer, A. Riscos-Núńez, General purpose software tool for simulating biological phenomena by means of P Systems, in Proceedings of IEEE 5th International Conference BIC-TA 2010, Changsha, China (2010), pp. 637–643
96.
go back to reference D. Pescini, D. Besozzi, G. Mauri, C. Zandron, Dynamic probabilistic P systems. Int. J. Found. Comput. Sci. 1(17), 183–204 (2006)CrossRefMathSciNet D. Pescini, D. Besozzi, G. Mauri, C. Zandron, Dynamic probabilistic P systems. Int. J. Found. Comput. Sci. 1(17), 183–204 (2006)CrossRefMathSciNet
98.
go back to reference A. Phillips, L. Cardelli, A correct abstract machine for the stochastic Pi-calculus, in Concurrent Models in Molecular Biology, BioConcur ’04 (ENTCS, 2004) A. Phillips, L. Cardelli, A correct abstract machine for the stochastic Pi-calculus, in Concurrent Models in Molecular Biology, BioConcur ’04 (ENTCS, 2004)
99.
go back to reference A. Phillips, L. Cardelli, G. Castagna, A graphical representation for biological processes in the stochastic \(\pi \)-calculus. Trans. Comput. Syst. Biol. 4230, 123–152 (2006)MathSciNet A. Phillips, L. Cardelli, G. Castagna, A graphical representation for biological processes in the stochastic \(\pi \)-calculus. Trans. Comput. Syst. Biol. 4230, 123–152 (2006)MathSciNet
100.
go back to reference A. Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society Press, 1977), pp. 46–57 A. Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society Press, 1977), pp. 46–57
101.
go back to reference C. Priami, Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)CrossRef C. Priami, Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)CrossRef
102.
103.
go back to reference C. Priami, P. Quaglia, Modelling the dynamics of biosystems. Brief. Bioinform. 5(3), 259–269 (2004)CrossRef C. Priami, P. Quaglia, Modelling the dynamics of biosystems. Brief. Bioinform. 5(3), 259–269 (2004)CrossRef
104.
go back to reference C. Priami, A. Regev, E. Shapiro, W. Silverman, Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett. 80, 25–31 (2001)CrossRefMATHMathSciNet C. Priami, A. Regev, E. Shapiro, W. Silverman, Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett. 80, 25–31 (2001)CrossRefMATHMathSciNet
106.
go back to reference R. Ramaswamy, N. González-Segredo, I.F. Sbalzarini, A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 130(24), 244104 (2009)CrossRef R. Ramaswamy, N. González-Segredo, I.F. Sbalzarini, A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 130(24), 244104 (2009)CrossRef
107.
go back to reference V.N. Reddy, M.N. Liebman, M.L. Mavrovouniotis, Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)CrossRef V.N. Reddy, M.N. Liebman, M.L. Mavrovouniotis, Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)CrossRef
108.
go back to reference V.N. Reddy, M.L. Mavrovouniotis, M.N. Liebman, Petri net representations in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1, 328–336 (1993) V.N. Reddy, M.L. Mavrovouniotis, M.N. Liebman, Petri net representations in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1, 328–336 (1993)
109.
go back to reference A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the \(\pi \)-calculus process algebra, in Pacific Symposium on Biocomputation, vol. 26 (2001), pp. 459–470 A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the \(\pi \)-calculus process algebra, in Pacific Symposium on Biocomputation, vol. 26 (2001), pp. 459–470
110.
go back to reference F. Romero-Campero, M. Gheorghe, L. Bianco, D. Pescini, M. Pérez-Jiménez, R. Ceterchi, Towards probabilistic model checking on P systems using PRISM, in Membrane Computing, volume 4361 (LNCS/Springer, Berlin, 2006), pp. 477–495 F. Romero-Campero, M. Gheorghe, L. Bianco, D. Pescini, M. Pérez-Jiménez, R. Ceterchi, Towards probabilistic model checking on P systems using PRISM, in Membrane Computing, volume 4361 (LNCS/Springer, Berlin, 2006), pp. 477–495
111.
go back to reference F. J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor, Structure and parameter estimation for cell systems biology models, in Proceedings of the 10th annual conference on Genetic and Evolutionary Computation (GECCO ’08) (2008), pp. 331–339 F. J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor, Structure and parameter estimation for cell systems biology models, in Proceedings of the 10th annual conference on Genetic and Evolutionary Computation (GECCO ’08) (2008), pp. 331–339
112.
go back to reference F.J. Romero-Campero, M. Gheorghe, G. Ciobanu, J.M. Auld, M.J. Pérez-Jiménez, Cellular modelling using P systems and process algebra. Prog. Nat. Sci. 17, 375–383 (2007)CrossRefMATH F.J. Romero-Campero, M. Gheorghe, G. Ciobanu, J.M. Auld, M.J. Pérez-Jiménez, Cellular modelling using P systems and process algebra. Prog. Nat. Sci. 17, 375–383 (2007)CrossRefMATH
113.
go back to reference F.J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheorghe, N. Krasnogor, Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 20(03), 427–442 (2009)CrossRefMATH F.J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheorghe, N. Krasnogor, Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 20(03), 427–442 (2009)CrossRefMATH
114.
go back to reference F. J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, N. Krasnogor, A multiscale modeling framework based on P systems, in WMC9 2008 (Springer-Verlag, Berlin, 2009), pp. 63–77 F. J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, N. Krasnogor, A multiscale modeling framework based on P systems, in WMC9 2008 (Springer-Verlag, Berlin, 2009), pp. 63–77
116.
go back to reference R.P. Shetty, D. Endy, T.F. Knight, Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008)CrossRef R.P. Shetty, D. Endy, T.F. Knight, Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008)CrossRef
117.
go back to reference A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)CrossRef A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)CrossRef
118.
go back to reference M.W. Sneddon, J.R. Faeder, T. Emonet, Efficient modeling, simulation and coarse-grain of biological complexity with NFsim. Nat. Methods 8, 177–183 (2011)CrossRef M.W. Sneddon, J.R. Faeder, T. Emonet, Efficient modeling, simulation and coarse-grain of biological complexity with NFsim. Nat. Methods 8, 177–183 (2011)CrossRef
119.
go back to reference R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)CrossRefMATHMathSciNet R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)CrossRefMATHMathSciNet
120.
go back to reference F. J. W. Symons, Introduction to numerical Petri nets, a general graphical model of concurrent processing systems. Aust. Telecommun. Res. 14(1), 26 (1980) F. J. W. Symons, Introduction to numerical Petri nets, a general graphical model of concurrent processing systems. Aust. Telecommun. Res. 14(1), 26 (1980)
121.
go back to reference J. Twycross, L.R. Band, M.J. Bennett, J.R. King, N. Krasnogor, Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst. Biol. 4(1), 1–34 (2010)CrossRef J. Twycross, L.R. Band, M.J. Bennett, J.R. King, N. Krasnogor, Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst. Biol. 4(1), 1–34 (2010)CrossRef
122.
go back to reference S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern, Generalized communicating P systems. Theor. Comput. Sci. 404(1–2), 170–184 (2008)CrossRefMATHMathSciNet S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern, Generalized communicating P systems. Theor. Comput. Sci. 404(1–2), 170–184 (2008)CrossRefMATHMathSciNet
123.
go back to reference J. Will, M. Heiner, Petri nets in biology, chemistry, and medicine. Bibliography. Technical report, Brandenbury University of Technology at Cottbus, 2002 J. Will, M. Heiner, Petri nets in biology, chemistry, and medicine. Bibliography. Technical report, Brandenbury University of Technology at Cottbus, 2002
124.
go back to reference S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)MATH S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)MATH
125.
go back to reference A. Yachie-Kinoshita, T. Nishino, H. Shimo, M. Suematsu, M. Tomita, A metabolic model of human erythrocytes: practical application of the e-cell simulation environment. Biomed. Biotechnol. 2010, 642420 (2010) A. Yachie-Kinoshita, T. Nishino, H. Shimo, M. Suematsu, M. Tomita, A metabolic model of human erythrocytes: practical application of the e-cell simulation environment. Biomed. Biotechnol. 2010, 642420 (2010)
Metadata
Title
Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology
Authors
Jonathan Blakes
Jamie Twycross
Savas Konur
Francisco Jose Romero-Campero
Natalio Krasnogor
Marian Gheorghe
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-03191-0_1

Premium Partner