Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

07-02-2021

Information-Based Node Selection for Joint PCA and Compressive Sensing-Based Data Aggregation

Authors: Gholamreza Imanian, Mohammad Ali Pourmina, Ahmad Salahi

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently it has been shown that when Principal Component Analysis is applied as a dictionary learning technique to Compressive Sensing-based data aggregation, using a Deterministic Node Selection method for data collection in Wireless Sensor Networks can outperform Random Node Selection ones. In this paper, a new scheduling method for selection of measured nodes in a data collection round, called “Information-Based Deterministic Node Selection”, is proposed. Simulation results for synthetic and real data sets show that the proposed method outperforms a reference DNS method in terms of energy consumption per reconstruction error. Correlation (or covariance) matrix estimation is necessary for DNS strategies which are accomplished by gathering data from all network nodes in a few initial time slots of collection rounds. In this regard, we also propose the use of a particular type of shrinkage estimator in preference to the standard correlation matrix estimator. With the aid of the new estimator, we can obtain data correlations with the same accuracy of standard estimator while we need less number of observations. Our numerical experiments demonstrate that when the number of measured nodes is less than 50% of the total nodes, using shrinkage estimator causes extra energy savings in sensor nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
If actual data of nodes are available in any previous time slot we utilize these values instead of reconstructed data.
 
2
The value of H should not be great for any non-stationary signal. As shown in reference [18], the best results are obtained for the real signals by selecting the number 2 for H.
 
3
Refer to Appendix A in reference [22] for detailed information on how to calculate the quantity \(\mathop {Var}\limits ^{\wedge } (s_{ij} ) \)
 
Literature
1.
go back to reference Ebrahimi, Dariush, & Assi, Chadi. (2014). Compressive data gathering using random projection for energy efficient wireless sensor networks. Ad Hoc Networks, 16, 105–119.CrossRef Ebrahimi, Dariush, & Assi, Chadi. (2014). Compressive data gathering using random projection for energy efficient wireless sensor networks. Ad Hoc Networks, 16, 105–119.CrossRef
2.
go back to reference Huang, J., & Soong, B. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef Huang, J., & Soong, B. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef
3.
go back to reference Kingsy Grace, R., & Manju, S. (2019). A comprehensive review of wireless sensor networks based air pollution monitoring systems. Wireless Personal Communications, 108(4), 2499–2515.CrossRef Kingsy Grace, R., & Manju, S. (2019). A comprehensive review of wireless sensor networks based air pollution monitoring systems. Wireless Personal Communications, 108(4), 2499–2515.CrossRef
4.
go back to reference Ma, Yuan, Zhang, Xingjian, & Gao, Yue. (2017). Joint sub-nyquist spectrum sensing scheme with geolocation database over TV white space. IEEE Transactions on Vehicular Technology, 67(5), 3998–4007.CrossRef Ma, Yuan, Zhang, Xingjian, & Gao, Yue. (2017). Joint sub-nyquist spectrum sensing scheme with geolocation database over TV white space. IEEE Transactions on Vehicular Technology, 67(5), 3998–4007.CrossRef
5.
go back to reference Zhang, X., Ma, Y., Gao, Y., & Zhang, W. (2018). Autonomous compressive-sensing-augmented spectrum sensing. IEEE Transactions on Vehicular Technology, 67(8), 6970–6980.CrossRef Zhang, X., Ma, Y., Gao, Y., & Zhang, W. (2018). Autonomous compressive-sensing-augmented spectrum sensing. IEEE Transactions on Vehicular Technology, 67(8), 6970–6980.CrossRef
6.
go back to reference Lustig, Michael, Donoho, David L., Santos, Juan M., & Pauly, John M. (2008). Compressed sensing MRI. IEEE Signal Processing Magazine, 25(2), 72–82.CrossRef Lustig, Michael, Donoho, David L., Santos, Juan M., & Pauly, John M. (2008). Compressed sensing MRI. IEEE Signal Processing Magazine, 25(2), 72–82.CrossRef
7.
go back to reference Candes, Emmanuel J., Romberg, Justin, & Tao, Terence. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef Candes, Emmanuel J., Romberg, Justin, & Tao, Terence. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.MathSciNetCrossRef
8.
go back to reference Baraniuk, Richard, Davenport, Mark, DeVore, Ronald, & Wakin, Michael. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3), 253–263.MathSciNetCrossRef Baraniuk, Richard, Davenport, Mark, DeVore, Ronald, & Wakin, Michael. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3), 253–263.MathSciNetCrossRef
9.
go back to reference Bajwa, W. U., Haupt, J. D., Sayeed, A. M., & Nowak, R. D. (2007). Joint source-channel communication for distributed estimation in sensor networks. IEEE Transactions on Information Theory, 53(10), 3629–3653.MathSciNetCrossRef Bajwa, W. U., Haupt, J. D., Sayeed, A. M., & Nowak, R. D. (2007). Joint source-channel communication for distributed estimation in sensor networks. IEEE Transactions on Information Theory, 53(10), 3629–3653.MathSciNetCrossRef
10.
go back to reference Haupt, Jarvis, Bajwa, Waheed U., Rabbat, Michael, & Nowak, Robert. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef Haupt, Jarvis, Bajwa, Waheed U., Rabbat, Michael, & Nowak, Robert. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef
11.
go back to reference Godwin Shen, So Yeon Lee, Sungwon Lee, Sundeep Pattem, Aaron Tu, Bhaskar Krishnamachari, Antonio Ortega, Michael Cheng, Sam Dolinar, & Aaron Kiely.(2008). Novel distributed wavelet transforms and routing algorithms for efficient data gathering in sensor webs. In NASA Earth Science Technology Conference (ESTC), Godwin Shen, So Yeon Lee, Sungwon Lee, Sundeep Pattem, Aaron Tu, Bhaskar Krishnamachari, Antonio Ortega, Michael Cheng, Sam Dolinar, & Aaron Kiely.(2008). Novel distributed wavelet transforms and routing algorithms for efficient data gathering in sensor webs. In NASA Earth Science Technology Conference (ESTC),
12.
go back to reference Chong Luo, Feng Wu, Jun Sun, & Chang Wen Chen.(2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on Mobile computing and networking, pages 145–156. ACM, Chong Luo, Feng Wu, Jun Sun, & Chang Wen Chen.(2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on Mobile computing and networking, pages 145–156. ACM,
13.
go back to reference Liu Xiang, Jun Luo, & Athanasios Vasilakos.(2011). Compressed data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on Sensor, mesh and ad hoc communications and networks (SECON), pages 46–54 Liu Xiang, Jun Luo, & Athanasios Vasilakos.(2011). Compressed data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on Sensor, mesh and ad hoc communications and networks (SECON), pages 46–54
14.
go back to reference Sungwon Lee, Sundeep Pattem, Maheswaran Sathiamoorthy, Bhaskar Krishnamachari, & Antonio Ortega.(2009) Compressed sensing and routing in multi-hop networks. Technical report, University of Southern California Sungwon Lee, Sundeep Pattem, Maheswaran Sathiamoorthy, Bhaskar Krishnamachari, & Antonio Ortega.(2009) Compressed sensing and routing in multi-hop networks. Technical report, University of Southern California
15.
go back to reference Giorgio Quer, Riccardo Masiero, Daniele Munaretto, Michele Rossi, Joerg Widmer, & Michele Zorzi. (2009).On the interplay between routing and signal representation for compressive sensing in wireless sensor networks. In Information Theory and Applications Workshop, pages 206–215. IEEE Giorgio Quer, Riccardo Masiero, Daniele Munaretto, Michele Rossi, Joerg Widmer, & Michele Zorzi. (2009).On the interplay between routing and signal representation for compressive sensing in wireless sensor networks. In Information Theory and Applications Workshop, pages 206–215. IEEE
16.
go back to reference Wei Wang, Minos Garofalakis, & Kannan Ramchandran.(2007). Distributed sparse random projections for refinable approximation. In Proceedings of the 6th international conference on Information processing in sensor networks (IPSN), pages 331–339. ACM Wei Wang, Minos Garofalakis, & Kannan Ramchandran.(2007). Distributed sparse random projections for refinable approximation. In Proceedings of the 6th international conference on Information processing in sensor networks (IPSN), pages 331–339. ACM
17.
go back to reference Rana, Rajib, Wen, Hu., & Chou, Chun Tung. (2010). Energy-aware sparse approximation technique (EAST) for rechargeable wireless sensor networks. European conference on wireless sensor networks (pp. 306–321). NewYork: Springer.CrossRef Rana, Rajib, Wen, Hu., & Chou, Chun Tung. (2010). Energy-aware sparse approximation technique (EAST) for rechargeable wireless sensor networks. European conference on wireless sensor networks (pp. 306–321). NewYork: Springer.CrossRef
18.
go back to reference Quer, Giorgio, Masiero, Riccardo, Pillonetto, Gianluigi, Rossi, Michele, & Zorzi, Michele. (2012). Sensing, compression, and recovery for WSNs: Sparse signal modeling and monitoring framework. IEEE Transactions on Wireless Communications, 11(10), 3447–3461.CrossRef Quer, Giorgio, Masiero, Riccardo, Pillonetto, Gianluigi, Rossi, Michele, & Zorzi, Michele. (2012). Sensing, compression, and recovery for WSNs: Sparse signal modeling and monitoring framework. IEEE Transactions on Wireless Communications, 11(10), 3447–3461.CrossRef
19.
go back to reference Hooshmand, M., Rossi, M., Zordan, D., & Zorzi, M. (2016). Covariogram-based compressive sensing for environmental wireless sensor networks. IEEE Sensors Journal, 16(6), 1716–1729.CrossRef Hooshmand, M., Rossi, M., Zordan, D., & Zorzi, M. (2016). Covariogram-based compressive sensing for environmental wireless sensor networks. IEEE Sensors Journal, 16(6), 1716–1729.CrossRef
20.
go back to reference Stein, Charles. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. in proc. of the 3rd berkeley symp. on math. Statist. Prob., 1, 197–206. Stein, Charles. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. in proc. of the 3rd berkeley symp. on math. Statist. Prob., 1, 197–206.
21.
go back to reference James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proc. of 4th Berkeley Symp. on Math. Statist. Prob., 1, 361–380. James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proc. of 4th Berkeley Symp. on Math. Statist. Prob., 1, 361–380.
22.
go back to reference Juliane Schäfer & Korbinian Strimmer.(2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1): Juliane Schäfer & Korbinian Strimmer.(2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1):
23.
go back to reference Rainer Opgen-Rhein & Korbinian Strimmer.(2007). Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Statistical applications in genetics and molecular biology, 6(1):–, Rainer Opgen-Rhein & Korbinian Strimmer.(2007). Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Statistical applications in genetics and molecular biology, 6(1):–,
24.
go back to reference Bell, Peter, & King, Simon. (2009). Diagonal priors for full covariance speech recognition. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 113–117. Bell, Peter, & King, Simon. (2009). Diagonal priors for full covariance speech recognition. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 113–117.
25.
go back to reference Leonardo R Bachega, James Theiler, and Charles A Bouman. Evaluating and improving local hyperspectral anomaly detectors. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages 1–8, 2011. Leonardo R Bachega, James Theiler, and Charles A Bouman. Evaluating and improving local hyperspectral anomaly detectors. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages 1–8, 2011.
26.
go back to reference Chen, Yilun, Wiesel, Ami, Eldar, Yonina C., & Hero, Alfred O. (2010). Shrinkage algorithms for MMSE covariance estimation. IEEE Transactions on Signal Processing, 58(10), 5016–5029.MathSciNetCrossRef Chen, Yilun, Wiesel, Ami, Eldar, Yonina C., & Hero, Alfred O. (2010). Shrinkage algorithms for MMSE covariance estimation. IEEE Transactions on Signal Processing, 58(10), 5016–5029.MathSciNetCrossRef
27.
go back to reference Lancewicki, Tomer, & Aladjem, Mayer. (2014). Multi-target shrinkage estimation for covariance matrices. IEEE Transactions on Signal Processing, 62(24), 6380–6390.MathSciNetCrossRef Lancewicki, Tomer, & Aladjem, Mayer. (2014). Multi-target shrinkage estimation for covariance matrices. IEEE Transactions on Signal Processing, 62(24), 6380–6390.MathSciNetCrossRef
28.
go back to reference Moteiv Corporation. Tmote sky datasheet, 2006. Moteiv Corporation. Tmote sky datasheet, 2006.
29.
go back to reference Texas Instruments. Msp430x1xx family user’s guide, 2006. Texas Instruments. Msp430x1xx family user’s guide, 2006.
30.
31.
go back to reference Liang, Yao, & Peng, Wei. (2010). Minimizing energy consumptions in wireless sensor networks via two-modal transmission. ACM SIGCOMM Computer Communication Review, 40(1), 12–18.CrossRef Liang, Yao, & Peng, Wei. (2010). Minimizing energy consumptions in wireless sensor networks via two-modal transmission. ACM SIGCOMM Computer Communication Review, 40(1), 12–18.CrossRef
32.
go back to reference Mohimani, Hosein, Babaie-Zadeh, Massoud, & Jutten, Christian. (2009). A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transactions on Signal Processing, 57(1), 289–301.MathSciNetCrossRef Mohimani, Hosein, Babaie-Zadeh, Massoud, & Jutten, Christian. (2009). A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Transactions on Signal Processing, 57(1), 289–301.MathSciNetCrossRef
33.
go back to reference Jolliffe, Ian. (2011). Principal component analysis. NewYork: Springer.MATH Jolliffe, Ian. (2011). Principal component analysis. NewYork: Springer.MATH
34.
go back to reference Michele Rossi, Mohsen Hooshmand, Davide Zordan, & Michele Zorzi.(2015) Evaluating the gap between compressive sensing and distributed source coding in WSN. In International Conference on Computing, Networking and Communications (ICNC), pages 911–917. IEEE Michele Rossi, Mohsen Hooshmand, Davide Zordan, & Michele Zorzi.(2015) Evaluating the gap between compressive sensing and distributed source coding in WSN. In International Conference on Computing, Networking and Communications (ICNC), pages 911–917. IEEE
35.
go back to reference Davide Zordan, Giorgio Quer, Michele Zorzi, & Michele Rossi.(2011) Modeling and generation of space-time correlated signals for sensor network fields. In Global Telecommunications Conference (GLOBECOM), pages 1–6. IEEE Davide Zordan, Giorgio Quer, Michele Zorzi, & Michele Rossi.(2011) Modeling and generation of space-time correlated signals for sensor network fields. In Global Telecommunications Conference (GLOBECOM), pages 1–6. IEEE
36.
go back to reference Vuran, Mehmet C., & Akyildiz, Ian F. (2006). Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE/ACM Transactions On Networking, 14(2), 316–329.CrossRef Vuran, Mehmet C., & Akyildiz, Ian F. (2006). Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE/ACM Transactions On Networking, 14(2), 316–329.CrossRef
37.
go back to reference R. Cristescu & M. Vetterli.(2005). On the optimal density for real-time data gathering of spatio-temporal processes in sensor networks. In 4th International Symposium on Information Processing in Sensor Networks (IPSN), pages 159–164 R. Cristescu & M. Vetterli.(2005). On the optimal density for real-time data gathering of spatio-temporal processes in sensor networks. In 4th International Symposium on Information Processing in Sensor Networks (IPSN), pages 159–164
38.
go back to reference Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, & Wei Hong. (2004) Model-driven data acquisition in sensor networks. In Proc. of the 30th international conference on Very large Data Bases, volume 30, pages 588–599 Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein, & Wei Hong. (2004) Model-driven data acquisition in sensor networks. In Proc. of the 30th international conference on Very large Data Bases, volume 30, pages 588–599
39.
go back to reference Cover, Thomas M., & Thomas, Joy A. (2012). Elements of information theory. NewYork: Wiley.MATH Cover, Thomas M., & Thomas, Joy A. (2012). Elements of information theory. NewYork: Wiley.MATH
Metadata
Title
Information-Based Node Selection for Joint PCA and Compressive Sensing-Based Data Aggregation
Authors
Gholamreza Imanian
Mohammad Ali Pourmina
Ahmad Salahi
Publication date
07-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08108-9

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue