Skip to main content
Top

2024 | OriginalPaper | Chapter

6. Information-Theoretic Autonomous Source Search and Estimation of Mobile Sensors

Authors : Minkyu Park, Seulbi An, Hongro Jang, Hyondong Oh

Published in: Control of Autonomous Aerial Vehicles

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Estimation of a source term, including the origin and release rate, for reconstructing a hazardous chemical, biological, or radiological substance dispersion event in the atmosphere is very important for public safety. The increase in the potential danger of hazardous substances leakage accidents and the threat of malicious acts in random places makes the estimation of the source term difficult using traditional systems such as pre-installed ground sensors in specific areas or ground vehicles. Unmanned aerial vehicles (UAVs) can be considered as an alternative solution for estimating the source term because they can be deployed to any arbitrary place and rapidly cover relatively larger areas compared with ground-based systems. This chapter introduces autonomous source search and estimation strategies for UAVs. Bayesian inference-based estimation approaches that can accurately estimate the source term in turbulent and noisy environments are presented using domain knowledge such as the plume dispersion and sensor models. In particular, since the estimation problem is highly nonlinear and non-Gaussian, the sequential Monte Carlo method (i.e., particle filter) Besides, various information-theoretic decision-making strategies are introduced using different information measures to determine the most informative sampling point at each time step using different information measures. To use the interaction and information sharing among multiple agents at best, cooperation and sensor fusion strategies are also discussed. Finally, comprehensive numerical simulations and flight experiments are presented to validate and compare the performance of the proposed strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hutchinson M, Oh H, Chen W-H (2017) A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf Fus 36:130–148CrossRef Hutchinson M, Oh H, Chen W-H (2017) A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf Fus 36:130–148CrossRef
2.
go back to reference Singh SK, Rani R (2014) A least-squares inversion technique for identification of a point release: Application to fusion field trials 2007. Atmos Environ 92:104–117CrossRef Singh SK, Rani R (2014) A least-squares inversion technique for identification of a point release: Application to fusion field trials 2007. Atmos Environ 92:104–117CrossRef
3.
go back to reference Sujit P, Ghose D (2004) Search using multiple UAVs with flight time constraints. IEEE Trans Aerosp Electron Syst 40(2):491–509CrossRef Sujit P, Ghose D (2004) Search using multiple UAVs with flight time constraints. IEEE Trans Aerosp Electron Syst 40(2):491–509CrossRef
4.
go back to reference Erdos D, Erdos A, Watkins SE (2013) An experimental uav system for search and rescue challenge. IEEE Aerosp Electron Syst Mag 28(5):32–37CrossRef Erdos D, Erdos A, Watkins SE (2013) An experimental uav system for search and rescue challenge. IEEE Aerosp Electron Syst Mag 28(5):32–37CrossRef
5.
go back to reference Esmailifar SM, Saghafi F (2015) Moving target localization by cooperation of multiple flying vehicles. IEEE Trans Aerosp Electron Syst 51(1):739–746CrossRef Esmailifar SM, Saghafi F (2015) Moving target localization by cooperation of multiple flying vehicles. IEEE Trans Aerosp Electron Syst 51(1):739–746CrossRef
6.
go back to reference Boström-Rost P, Axehill D, Hendeby G (2021) Sensor management for search and track using the poisson multi-bernoulli mixture filter. IEEE Trans Aerosp Electron Syst Boström-Rost P, Axehill D, Hendeby G (2021) Sensor management for search and track using the poisson multi-bernoulli mixture filter. IEEE Trans Aerosp Electron Syst
7.
go back to reference Neumann PP, Asadi S, Lilienthal AJ, Bartholmai M, Schiller JH (2012) Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping. IEEE Robot Autom Mag 19(1):50–61CrossRef Neumann PP, Asadi S, Lilienthal AJ, Bartholmai M, Schiller JH (2012) Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping. IEEE Robot Autom Mag 19(1):50–61CrossRef
8.
go back to reference Hutchinson M, Liu C, Chen W-H (2019) Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robot 36(4):797–817CrossRef Hutchinson M, Liu C, Chen W-H (2019) Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robot 36(4):797–817CrossRef
9.
go back to reference Hutchinson M, Ladosz P, Liu C, Chen W-H (2019) Experimental assessment of plume mapping using point measurements from unmanned vehicles. In: 2019 international conference on robotics and autonomous Hutchinson M, Ladosz P, Liu C, Chen W-H (2019) Experimental assessment of plume mapping using point measurements from unmanned vehicles. In: 2019 international conference on robotics and autonomous
10.
go back to reference Gao W, Wang W, Zhu H, Huang G, Wu D, Du Z (2018) Robust radiation sources localization based on the peak suppressed particle filter for mixed multi-modal environments. Sensors 18(11):3784CrossRef Gao W, Wang W, Zhu H, Huang G, Wu D, Du Z (2018) Robust radiation sources localization based on the peak suppressed particle filter for mixed multi-modal environments. Sensors 18(11):3784CrossRef
11.
go back to reference Voges N, Chaffiol A, Lucas P, Martinez D (2014) Reactive searching and Infotaxis in odor source localization. PLOS Comput Biol 10(10):1–13CrossRef Voges N, Chaffiol A, Lucas P, Martinez D (2014) Reactive searching and Infotaxis in odor source localization. PLOS Comput Biol 10(10):1–13CrossRef
12.
go back to reference Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai M, Schiller JH (2013) Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv Robot 27(9):725–738CrossRef Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai M, Schiller JH (2013) Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv Robot 27(9):725–738CrossRef
13.
go back to reference Pyk P, i Badia SB, Bernardet U, Knüsel P, Carlsson M, Gu J, Chanie E, Hansson BS, Pearce TC, Verschure PF, (2006) An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonom Robot 20(3):197–213 Pyk P, i Badia SB, Bernardet U, Knüsel P, Carlsson M, Gu J, Chanie E, Hansson BS, Pearce TC, Verschure PF, (2006) An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonom Robot 20(3):197–213
14.
go back to reference Russell RA, Bab-Hadiashar A, Shepherd RL, Wallace GG (2003) A comparison of reactive robot chemotaxis algorithms. Robot Autonom Syst 45(2):83–97CrossRef Russell RA, Bab-Hadiashar A, Shepherd RL, Wallace GG (2003) A comparison of reactive robot chemotaxis algorithms. Robot Autonom Syst 45(2):83–97CrossRef
15.
go back to reference Bourne JR, Pardyjak ER, Leang KK (2019) Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots. IEEE Trans Robot 35(4):967–986CrossRef Bourne JR, Pardyjak ER, Leang KK (2019) Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots. IEEE Trans Robot 35(4):967–986CrossRef
16.
go back to reference Li J-G, Meng Q-H, Wang Y, Zeng M (2011) Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Autonom Robot 30(3):281–292CrossRef Li J-G, Meng Q-H, Wang Y, Zeng M (2011) Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Autonom Robot 30(3):281–292CrossRef
17.
go back to reference Hoffmann GM, Tomlin CJ (2010) Mobile sensor network control using mutual information methods and particle filters. IEEE Trans Autom Control 55(1):32–47MathSciNetCrossRefMATH Hoffmann GM, Tomlin CJ (2010) Mobile sensor network control using mutual information methods and particle filters. IEEE Trans Autom Control 55(1):32–47MathSciNetCrossRefMATH
18.
go back to reference Park M, An S, Seo J, Oh H (2021) Autonomous source search for uavs using gaussian mixture model-based infotaxis: Algorithm and flight experiments. IEEE Trans Aerosp Electron Syst 57(6):4238–4254CrossRef Park M, An S, Seo J, Oh H (2021) Autonomous source search for uavs using gaussian mixture model-based infotaxis: Algorithm and flight experiments. IEEE Trans Aerosp Electron Syst 57(6):4238–4254CrossRef
19.
go back to reference Park M, Oh H (2020) Cooperative information-driven source search and estimation for multiple agents. Inf Fus 54:72–84CrossRef Park M, Oh H (2020) Cooperative information-driven source search and estimation for multiple agents. Inf Fus 54:72–84CrossRef
20.
go back to reference Vergassola M, Villermaux E, Shraiman BI (2007) Infotaxis as a strategy for searching without gradients. Nature 445(7126):406CrossRef Vergassola M, Villermaux E, Shraiman BI (2007) Infotaxis as a strategy for searching without gradients. Nature 445(7126):406CrossRef
21.
go back to reference Ristic B, Skvortsov A, Gunatilaka A (2016) A study of cognitive strategies for an autonomous search. Inf Fus 28:1–9CrossRef Ristic B, Skvortsov A, Gunatilaka A (2016) A study of cognitive strategies for an autonomous search. Inf Fus 28:1–9CrossRef
22.
go back to reference Hutchinson M, Oh H, Chen W-H (2018) Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Inf Fus 42:179–189CrossRef Hutchinson M, Oh H, Chen W-H (2018) Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Inf Fus 42:179–189CrossRef
23.
go back to reference Lu Q, He Y, Wang J (2014) Localization of unknown odor source based on shannon’s entropy using multiple mobile robots. In: IECON 2014-40th annual conference of the IEEE industrial electronics society. IEEE, pp 2798–2803 Lu Q, He Y, Wang J (2014) Localization of unknown odor source based on shannon’s entropy using multiple mobile robots. In: IECON 2014-40th annual conference of the IEEE industrial electronics society. IEEE, pp 2798–2803
24.
go back to reference Zhao Y, Chen B, Zhu Z, Chen F, Wang Y, Ji Y (2020) Searching the diffusive source in an unknown obstructed environment by cognitive strategies with forbidden areas. In: Building and environment, p 107349 Zhao Y, Chen B, Zhu Z, Chen F, Wang Y, Ji Y (2020) Searching the diffusive source in an unknown obstructed environment by cognitive strategies with forbidden areas. In: Building and environment, p 107349
25.
go back to reference Park M, Ladosz P, Kim J, Oh H (2022) Receding horizon-based infotaxis with random sampling for source search and estimation in complex environments. IEEE Trans Aerosp Electron Syst Park M, Ladosz P, Kim J, Oh H (2022) Receding horizon-based infotaxis with random sampling for source search and estimation in complex environments. IEEE Trans Aerosp Electron Syst
26.
go back to reference An S, Park M, Oh H (2022) Receding-horizon rrt-infotaxis for autonomous source search in urban environments. Aerosp Sci Technol 120:107276CrossRef An S, Park M, Oh H (2022) Receding-horizon rrt-infotaxis for autonomous source search in urban environments. Aerosp Sci Technol 120:107276CrossRef
27.
go back to reference Masson J, Bechet MB, Vergassola M (2009) Chasing information to search in random environments. J Phys A: Math Theoret 42(43):1–14MathSciNetCrossRefMATH Masson J, Bechet MB, Vergassola M (2009) Chasing information to search in random environments. J Phys A: Math Theoret 42(43):1–14MathSciNetCrossRefMATH
28.
go back to reference Ristic B, Gilliam C, Moran W, Palmer JL (2020) Decentralised multi-platform search for a hazardous source in a turbulent flow. Inf Fus 58:13–23CrossRef Ristic B, Gilliam C, Moran W, Palmer JL (2020) Decentralised multi-platform search for a hazardous source in a turbulent flow. Inf Fus 58:13–23CrossRef
29.
go back to reference Karpas ED, Shklarsh A, Schneidman E (2017) Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents. Proceed Nat Acad Sci 114(22):5589–5594CrossRef Karpas ED, Shklarsh A, Schneidman E (2017) Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents. Proceed Nat Acad Sci 114(22):5589–5594CrossRef
30.
go back to reference Jang H, Park M, Oh H (2021) Improved socialtaxis for information-theoretic source search using cooperative multiple agents in turbulent environments. In: Asia-pacific international symposium Jang H, Park M, Oh H (2021) Improved socialtaxis for information-theoretic source search using cooperative multiple agents in turbulent environments. In: Asia-pacific international symposium
31.
go back to reference Wang Y, Huang H, Huang L, Ristic B (2017) Evaluation of Bayesian source estimation methods with prairie grass observations and gaussian plume model: A comparison of likelihood functions and distance measures. Atmos Environ 152:519–530CrossRef Wang Y, Huang H, Huang L, Ristic B (2017) Evaluation of Bayesian source estimation methods with prairie grass observations and gaussian plume model: A comparison of likelihood functions and distance measures. Atmos Environ 152:519–530CrossRef
32.
go back to reference Monroy J, Hernandez-Bennetts V, Fan H, Lilienthal A, Gonzalez-Jimenez J (2017) Gaden: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments. Sensors 17(7):1479CrossRef Monroy J, Hernandez-Bennetts V, Fan H, Lilienthal A, Gonzalez-Jimenez J (2017) Gaden: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments. Sensors 17(7):1479CrossRef
33.
go back to reference Senocak I, Hengartner NW, Short MB, Daniel WB (2008) Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. Atmosp Environ 42(33):7718–7727CrossRef Senocak I, Hengartner NW, Short MB, Daniel WB (2008) Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. Atmosp Environ 42(33):7718–7727CrossRef
34.
go back to reference Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT press, Cambridge, MAMATH Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT press, Cambridge, MAMATH
35.
go back to reference Efthimiou GC, Kovalets IV, Venetsanos A, Andronopoulos S, Argyropoulos CD, Kakosimos K (2017) An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment. Atmos Environ 170:118–129CrossRef Efthimiou GC, Kovalets IV, Venetsanos A, Andronopoulos S, Argyropoulos CD, Kakosimos K (2017) An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment. Atmos Environ 170:118–129CrossRef
36.
go back to reference Jaynes ET (2003) Probability theory: The logic of science. Cambridge University Press, Cambridge, MACrossRefMATH Jaynes ET (2003) Probability theory: The logic of science. Cambridge University Press, Cambridge, MACrossRefMATH
37.
go back to reference Yee E (2017) Automated computational inference engine for Bayesian source reconstruction: Application to some detections/non-detections made in the CTBT international monitoring system. Appl Math Sci 11(32):1581–1618 Yee E (2017) Automated computational inference engine for Bayesian source reconstruction: Application to some detections/non-detections made in the CTBT international monitoring system. Appl Math Sci 11(32):1581–1618
38.
go back to reference Hajieghrary H, Hsieh MA, Schwartz IB (2016) Multi-agent search for source localization in a turbulent medium. Phys Lett A 380(20):1698–1705MathSciNetCrossRef Hajieghrary H, Hsieh MA, Schwartz IB (2016) Multi-agent search for source localization in a turbulent medium. Phys Lett A 380(20):1698–1705MathSciNetCrossRef
39.
go back to reference Samaniego FJ (2010) A comparison of the Bayesian and frequentist approaches to estimation, vol 24. Springer Samaniego FJ (2010) A comparison of the Bayesian and frequentist approaches to estimation, vol 24. Springer
40.
go back to reference Ristic B, Arulampalam S, Gordon N (2003) Beyond the Kalman filter: Particle filters for tracking applications. Artech house Ristic B, Arulampalam S, Gordon N (2003) Beyond the Kalman filter: Particle filters for tracking applications. Artech house
41.
go back to reference Ristic B, Gunatilaka A, Wang Y (2017) Rao-blackwell dimension reduction applied to hazardous source parameter estimation. Sig Process 132:177–182CrossRef Ristic B, Gunatilaka A, Wang Y (2017) Rao-blackwell dimension reduction applied to hazardous source parameter estimation. Sig Process 132:177–182CrossRef
43.
go back to reference Cover TM, Thomas JA (2006) Elements of information theory. John Wiley & Sons, Hoboken, NJMATH Cover TM, Thomas JA (2006) Elements of information theory. John Wiley & Sons, Hoboken, NJMATH
44.
go back to reference Beyme S (2014) Autonomous, wireless sensor network-assisted target search and mapping. Ph.D. dissertation, University of British Columbia Beyme S (2014) Autonomous, wireless sensor network-assisted target search and mapping. Ph.D. dissertation, University of British Columbia
45.
go back to reference Sebastiani P, Wynn HP (2000) Maximum entropy sampling and optimal Bayesian experimental design. J Roy Stat Soc: Ser B (Stat Methodol) 62(1):145–157MathSciNetCrossRefMATH Sebastiani P, Wynn HP (2000) Maximum entropy sampling and optimal Bayesian experimental design. J Roy Stat Soc: Ser B (Stat Methodol) 62(1):145–157MathSciNetCrossRefMATH
46.
go back to reference Marden JR, Arslan G, Shamma JS (2009) Joint strategy fictitious play with inertia for potential games. IEEE Trans Autom Control 54(2):208–220MathSciNetCrossRefMATH Marden JR, Arslan G, Shamma JS (2009) Joint strategy fictitious play with inertia for potential games. IEEE Trans Autom Control 54(2):208–220MathSciNetCrossRefMATH
47.
go back to reference Carruthers D, Edmunds H, Ellis K, McHugh C, Davies B, Thomson D (1995) The atmospheric dispersion modelling system (ADMS): Comparisons with data from the kincaid experiment. Int J Environ Pollut 5(4–6):382–400 Carruthers D, Edmunds H, Ellis K, McHugh C, Davies B, Thomson D (1995) The atmospheric dispersion modelling system (ADMS): Comparisons with data from the kincaid experiment. Int J Environ Pollut 5(4–6):382–400
48.
go back to reference Na J, Jeon K, Lee WB (2018) Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem Eng Sci 181:68–78CrossRef Na J, Jeon K, Lee WB (2018) Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem Eng Sci 181:68–78CrossRef
49.
go back to reference Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. In: International conference on machine learning. PMLR, pp 1329–1338 Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. In: International conference on machine learning. PMLR, pp 1329–1338
Metadata
Title
Information-Theoretic Autonomous Source Search and Estimation of Mobile Sensors
Authors
Minkyu Park
Seulbi An
Hongro Jang
Hyondong Oh
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-39767-7_6

Premium Partner