Skip to main content
Top

2024 | OriginalPaper | Chapter

3. Information Thermodynamics of Transition Paths

Author : Miranda Louwerse

Published in: Efficient Control and Spontaneous Transitions

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, an alternative perspective of transition-path theory (which describes reactive events) is developed that unites it with stochastic thermodynamics to describe flows of entropy, energy, and information during the reaction. The main result is a quantification of the irreversibility of system dynamics while a reaction occurs, with parallel definitions of an entropy production rate and mutual information flow for transition-path dynamics. These provide a thermodynamic measure of the relevance of a particular degree of freedom to the reaction, yielding an optimization criterion for selecting collective variables that describe a reaction. (Material in this chapter also appears in Louwerse and Sivak (Phys Rev Lett 128:170602, 2022).)

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)MATH
2.
go back to reference Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetCrossRefMATH Metzner, P., Schutte, C., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7(3), 1192–1219 (2009)MathSciNetCrossRefMATH
3.
go back to reference Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noe, F. (eds.) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, chapter 7, pp. 91–100. Springer, Berlin (2014) Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noe, F. (eds.) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, chapter 7, pp. 91–100. Springer, Berlin (2014)
4.
go back to reference Berezhkovskii, A.M., Szabo, A.: Committors, first-passage times, fluxes, Markov states, milestones, and all that. J. Chem. Phys. 150, 54106 (2019)CrossRef Berezhkovskii, A.M., Szabo, A.: Committors, first-passage times, fluxes, Markov states, milestones, and all that. J. Chem. Phys. 150, 54106 (2019)CrossRef
6.
go back to reference Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)MATH Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)MATH
7.
go back to reference Busiello, D.M., Gupta, D., Maritan, A.: Entropy production in systems with unidirectional transitions. Phys. Rev. Res. 2(2), 1–15 (2020)CrossRef Busiello, D.M., Gupta, D., Maritan, A.: Entropy production in systems with unidirectional transitions. Phys. Rev. Res. 2(2), 1–15 (2020)CrossRef
8.
go back to reference Horowitz, J.M., Esposito, M.: Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014) Horowitz, J.M., Esposito, M.: Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014)
9.
go back to reference Esposito, M.: Stochastic thermodynamics under coarse-graining. Phys. Rev. E 85, 041125 (2012)ADSCrossRef Esposito, M.: Stochastic thermodynamics under coarse-graining. Phys. Rev. E 85, 041125 (2012)ADSCrossRef
10.
12.
go back to reference Ito, S.: Stochastic thermodynamic interpretation of information geometry. Phys. Rev. Lett. 121, 30605 (2018)ADSCrossRef Ito, S.: Stochastic thermodynamic interpretation of information geometry. Phys. Rev. Lett. 121, 30605 (2018)ADSCrossRef
13.
go back to reference Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20(4), 1608–1613 (1979)ADSCrossRef Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20(4), 1608–1613 (1979)ADSCrossRef
14.
15.
go back to reference Tsai, S.-T., Tiwary, P.: On the distance between A and B in molecular configuration space. Mol. Simul. 47, 449–456 (2021)CrossRef Tsai, S.-T., Tiwary, P.: On the distance between A and B in molecular configuration space. Mol. Simul. 47, 449–456 (2021)CrossRef
16.
go back to reference Hartich, D., Barato, A., Seifert, U.: Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech Theory Exp. 2014, 02016 (2014) Hartich, D., Barato, A., Seifert, U.: Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech Theory Exp. 2014, 02016 (2014)
17.
go back to reference Barato, A.C., Hartich, D., Seifert, U.: Rate of mutual information between coarse-grained non-Markovian variables. J. Stat. Phys. 153, 460–478 (2013)ADSMathSciNetCrossRefMATH Barato, A.C., Hartich, D., Seifert, U.: Rate of mutual information between coarse-grained non-Markovian variables. J. Stat. Phys. 153, 460–478 (2013)ADSMathSciNetCrossRefMATH
18.
go back to reference Chetrite, R., Rosinberg, M.L., Sagawa, T., Tarjus, G.: Information thermodynamics for interacting systems without bipartite structure. J. Stat. Mech. 21, 114002 (2019)MathSciNetCrossRefMATH Chetrite, R., Rosinberg, M.L., Sagawa, T., Tarjus, G.: Information thermodynamics for interacting systems without bipartite structure. J. Stat. Mech. 21, 114002 (2019)MathSciNetCrossRefMATH
19.
go back to reference Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)ADSCrossRefMATH Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)ADSCrossRefMATH
20.
go back to reference Li, W., Ma, A.: Reaction mechanism and reaction coordinates from the viewpoint of energy flow. J. Chem. Phys. 144, 114103 (2016)ADSCrossRef Li, W., Ma, A.: Reaction mechanism and reaction coordinates from the viewpoint of energy flow. J. Chem. Phys. 144, 114103 (2016)ADSCrossRef
21.
go back to reference Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef Bolhuis, P.G., Dellago, C.: Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015)CrossRef
22.
go back to reference Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef Peters, B.: Reaction coordinates and mechanistic hypothesis tests. Annu. Rev. Phys. Chem. 67, 669–690 (2016)ADSCrossRef
23.
go back to reference Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef Johnson, M.E., Hummer, G.: Characterization of a dynamic string method for the construction of transition pathways in molecular reactions. J. Phys. Chem. B 116(29), 8573–8583 (2012)CrossRef
24.
go back to reference Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964 (1998)ADSCrossRef Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964 (1998)ADSCrossRef
25.
go back to reference Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)ADSCrossRef Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002)ADSCrossRef
26.
go back to reference Van Erp, T.S., Moroni, D., Bolhuis, P.G.: A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118, 6617 (2003) Van Erp, T.S., Moroni, D., Bolhuis, P.G.: A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118, 6617 (2003)
27.
go back to reference Allen, R.J., Warren, P.B., Ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005)ADSCrossRef Allen, R.J., Warren, P.B., Ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005)ADSCrossRef
28.
go back to reference Faradjian, A.K., Elber, R.: Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889 (2004)ADSCrossRef Faradjian, A.K., Elber, R.: Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889 (2004)ADSCrossRef
29.
go back to reference Seifert, U.: From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019)ADSCrossRef Seifert, U.: From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019)ADSCrossRef
30.
go back to reference Li, J., Horowitz, J.M., Gingrich, T.R., Fakhri, N.: Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019)ADSCrossRef Li, J., Horowitz, J.M., Gingrich, T.R., Fakhri, N.: Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019)ADSCrossRef
31.
go back to reference Skinner, D.J., Dunkel, J.: Improved bounds on entropy production in living systems. PNAS 118(18), e2024300118 (2021)CrossRef Skinner, D.J., Dunkel, J.: Improved bounds on entropy production in living systems. PNAS 118(18), e2024300118 (2021)CrossRef
32.
go back to reference Gnesotto, F.S., Gradziuk, G., Ronceray, P., Broedersz, C.P.: Learning the non-equilibrium dynamics of Brownian movies. Nat. Commun. 11, 5378 (2020)ADSCrossRef Gnesotto, F.S., Gradziuk, G., Ronceray, P., Broedersz, C.P.: Learning the non-equilibrium dynamics of Brownian movies. Nat. Commun. 11, 5378 (2020)ADSCrossRef
33.
34.
go back to reference Li, Q., Lin, B., Ren, W.: Computing committor functions for the study of rare events using deep learning. J. Chem. Phys. 151, 54112 (2019)ADSCrossRef Li, Q., Lin, B., Ren, W.: Computing committor functions for the study of rare events using deep learning. J. Chem. Phys. 151, 54112 (2019)ADSCrossRef
35.
go back to reference Rotskoff, G.M., Mitchell, A.R., Vanden-Eijnden, E.: Active importance sampling for variational objectives dominated by rare events: consequences for optimization and generalization. In: Mathematical and Scientific Machine Learning PMLR, pp. 757–780 (2022) Rotskoff, G.M., Mitchell, A.R., Vanden-Eijnden, E.: Active importance sampling for variational objectives dominated by rare events: consequences for optimization and generalization. In: Mathematical and Scientific Machine Learning PMLR, pp. 757–780 (2022)
36.
go back to reference Ma, A., Dinner, A.R.: Automatic method for identifying reaction coordinates in complex systems. J. Phys. Chem. B 109, 6769–6779 (2005)CrossRef Ma, A., Dinner, A.R.: Automatic method for identifying reaction coordinates in complex systems. J. Phys. Chem. B 109, 6769–6779 (2005)CrossRef
37.
go back to reference Wang, Y., Tiwary, P.: State predictive information bottleneck. J. Chem. Phys. 154, 134111 (2021)ADSCrossRef Wang, Y., Tiwary, P.: State predictive information bottleneck. J. Chem. Phys. 154, 134111 (2021)ADSCrossRef
38.
go back to reference Wang, Y., Ribeiro, J.M.L., Tiwary, P.: Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol. 61, 139–145 (2020)CrossRef Wang, Y., Ribeiro, J.M.L., Tiwary, P.: Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol. 61, 139–145 (2020)CrossRef
Metadata
Title
Information Thermodynamics of Transition Paths
Author
Miranda Louwerse
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-40534-1_3

Premium Partners