Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2019

02-01-2019

Initial Studies on Development of High-Performance Nano-structured Fe2O3 Catalysts for Solid Rocket Propellants

Authors: R. Arun Chandru, Rekha P. Patel, Charlie Oommen, B. N. Raghunandan

Published in: Journal of Materials Engineering and Performance | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Space launch vehicles and strategic military vehicles commonly employ composite solid rocket propellants containing Fe2O3 as ballistic modifier. Nanoscale catalysts, including nanoscale Fe2O3, have been reported to exhibit superior activity in the thermal decomposition and combustion of composite rocket propellants. However, scalable methods to prepare such nano-structured catalysts with high performance as ballistic modifiers and systematic studies relating the synthesis parameters to the catalyst characteristics and consequently to the thermal and combustion properties of the composite propellant are scarce. In this paper, we report a novel and facile route to prepare nano-structured Fe2O3 with enhanced catalytic activity in the ballistic modification of ammonium perchlorate (AP)-based composite solid rocket propellant. A submerged spray precipitation method using air-assisted liquid-centered coaxial atomization has been developed to prepare these nano-structured Fe2O3 catalysts. The prepared Fe2O3 catalysts possess higher surface area and exhibit superior activity in the thermal sensitization of AP, leading to an 88% increase in the burning rate of AP-based composite solid rocket propellants, than the Fe2O3 catalyst prepared via traditional precipitation method. Merits of the developed preparatory route, influence of the atomization process on the nano-structure morphology and subsequent benefits of these nano-structured catalysts on the ballistic properties of AP-based propellants are demonstrated and discussed in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Mohapatra and S. Anand, Synthesis and Applications of Nano-structured Iron Oxides/Hydroxides—A Review, Int. J. Eng. Sci. Technol., 2010, 2–8, p 127–146 M. Mohapatra and S. Anand, Synthesis and Applications of Nano-structured Iron Oxides/Hydroxides—A Review, Int. J. Eng. Sci. Technol., 2010, 2–8, p 127–146
2.
go back to reference M. Khosravi and S. Azizian, Adsorption of Anionic Dyes from Aqueous Solution by Iron Oxide Nanospheres, J. Ind. Eng. Chem., 2014, 20–4, p 2561–2567CrossRef M. Khosravi and S. Azizian, Adsorption of Anionic Dyes from Aqueous Solution by Iron Oxide Nanospheres, J. Ind. Eng. Chem., 2014, 20–4, p 2561–2567CrossRef
3.
go back to reference S. Shen, S.A. Lindley, X. Chen, and J.Z. Zhang, Hematite Heterostructures for Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics, Energy Environ. Sci., 2016, 9, p 2744–2775CrossRef S. Shen, S.A. Lindley, X. Chen, and J.Z. Zhang, Hematite Heterostructures for Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics, Energy Environ. Sci., 2016, 9, p 2744–2775CrossRef
4.
go back to reference Z. Lu, Z. Hao, J. Wang, and L. Chen, Efficient Removal of Europium from Aqueous Solutions Using Attapulgite-Iron Oxide Magnetic Composites, J. Ind. Eng. Chem., 2016, 34, p 374–381CrossRef Z. Lu, Z. Hao, J. Wang, and L. Chen, Efficient Removal of Europium from Aqueous Solutions Using Attapulgite-Iron Oxide Magnetic Composites, J. Ind. Eng. Chem., 2016, 34, p 374–381CrossRef
5.
go back to reference B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, and R. Gopal, Optical and Magnetic Properties of Fe2O3 Nanoparticles Synthesized by Laser Ablation/Fragmentation Technique in Different Liquid Media, Surf. Sci., 2014, 289, p 462–471CrossRef B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, and R. Gopal, Optical and Magnetic Properties of Fe2O3 Nanoparticles Synthesized by Laser Ablation/Fragmentation Technique in Different Liquid Media, Surf. Sci., 2014, 289, p 462–471CrossRef
6.
go back to reference S. Zhang, P. Zhang, A. Xie, S. Li, F. Huang, and Y. Shen, A Novel 2D Porous Print Fabric-Like α-Fe2O3 Sheet with High Performance as the Anode Material for Lithium-Ion Battery, Electrochim. Acta, 2016, 212, p 912–920CrossRef S. Zhang, P. Zhang, A. Xie, S. Li, F. Huang, and Y. Shen, A Novel 2D Porous Print Fabric-Like α-Fe2O3 Sheet with High Performance as the Anode Material for Lithium-Ion Battery, Electrochim. Acta, 2016, 212, p 912–920CrossRef
7.
go back to reference G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 7th ed., Wiley, Hoboken, 2001 G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 7th ed., Wiley, Hoboken, 2001
8.
go back to reference N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion, 2nd ed., Wiley, Hoboken, 2007 N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion, 2nd ed., Wiley, Hoboken, 2007
9.
go back to reference P.W.M. Jacobs and H.M. Whitehead, Decomposition and Combustion of Ammonium Perchlorate, Chem. Rev., 1969, 69, p 551–590CrossRef P.W.M. Jacobs and H.M. Whitehead, Decomposition and Combustion of Ammonium Perchlorate, Chem. Rev., 1969, 69, p 551–590CrossRef
10.
go back to reference V.F. Komarov, Catalysis and Inhibition of the Combustion of Ammonium Perchlorate Based Solid Propellants, Combust. Explos. Shock Waves, 1999, 35–6, p 670–683CrossRef V.F. Komarov, Catalysis and Inhibition of the Combustion of Ammonium Perchlorate Based Solid Propellants, Combust. Explos. Shock Waves, 1999, 35–6, p 670–683CrossRef
11.
go back to reference V.V. Boldyrev, Thermal Decomposition of Ammonium Perchlorate, Thermochim. Acta, 2006, 443, p 1–36CrossRef V.V. Boldyrev, Thermal Decomposition of Ammonium Perchlorate, Thermochim. Acta, 2006, 443, p 1–36CrossRef
12.
go back to reference S.S. Joshi, P.R. Patil, and V.N. Krishnamurthy, Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide, Def. Sci. J, 2008, 58–6, p 721–727CrossRef S.S. Joshi, P.R. Patil, and V.N. Krishnamurthy, Thermal Decomposition of Ammonium Perchlorate in the Presence of Nanosized Ferric Oxide, Def. Sci. J, 2008, 58–6, p 721–727CrossRef
13.
go back to reference H. Xu, X. Wang, and L. Zhang, Selective Preparation of Nanorods and Micro-octahedrons of Fe2O3 and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate, Powder Technol., 2008, 185–2, p 176–180CrossRef H. Xu, X. Wang, and L. Zhang, Selective Preparation of Nanorods and Micro-octahedrons of Fe2O3 and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate, Powder Technol., 2008, 185–2, p 176–180CrossRef
14.
go back to reference I.P.S. Kapoor, P. Srivastava, and G. Singh, Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate, Propellants, Explos., Pyrotech., 2009, 34, p 351–356CrossRef I.P.S. Kapoor, P. Srivastava, and G. Singh, Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate, Propellants, Explos., Pyrotech., 2009, 34, p 351–356CrossRef
15.
go back to reference Y. Zhang and C. Meng, Facile Fabrication of Fe3O4 and Co3O4 Microspheres and Their Influence on the Thermal Decomposition of Ammonium Perchlorate, J. Alloys Compd., 2016, 674, p 259–265CrossRef Y. Zhang and C. Meng, Facile Fabrication of Fe3O4 and Co3O4 Microspheres and Their Influence on the Thermal Decomposition of Ammonium Perchlorate, J. Alloys Compd., 2016, 674, p 259–265CrossRef
16.
go back to reference H. Shim, G. Lim, J. Kim, H. Kim, and K. Koo, Preparation of the Spherical Nano-Fe2O3/NH4ClO4 Composites by Reactive Crystallization and Their Characterization, J. Ind. Eng. Chem., 2017, 54, p 434–439CrossRef H. Shim, G. Lim, J. Kim, H. Kim, and K. Koo, Preparation of the Spherical Nano-Fe2O3/NH4ClO4 Composites by Reactive Crystallization and Their Characterization, J. Ind. Eng. Chem., 2017, 54, p 434–439CrossRef
17.
go back to reference K.T. Lu, T.M. Yang, J.S. Li, and T.F. Yeh, Study on the Burning Characteristics of AP/AL/HTPB Composite Solid Propellant Containing Nano-Sized Ferric Oxide Powder, Combust. Sci. Technol., 2012, 184(12), p 2100–2116CrossRef K.T. Lu, T.M. Yang, J.S. Li, and T.F. Yeh, Study on the Burning Characteristics of AP/AL/HTPB Composite Solid Propellant Containing Nano-Sized Ferric Oxide Powder, Combust. Sci. Technol., 2012, 184(12), p 2100–2116CrossRef
18.
go back to reference T.D. Manship, S.D. Heister, and P.T. O’Neil, Experimental Investigation of High-Burning-Rate Composite Solid Propellants, J. Propul. Power, 2012, 28–6, p 1389–1398CrossRef T.D. Manship, S.D. Heister, and P.T. O’Neil, Experimental Investigation of High-Burning-Rate Composite Solid Propellants, J. Propul. Power, 2012, 28–6, p 1389–1398CrossRef
19.
go back to reference S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, and R.N. Muller, Magnetic iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev., 2008, 108, p 2064–2110CrossRef S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, and R.N. Muller, Magnetic iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev., 2008, 108, p 2064–2110CrossRef
20.
go back to reference M.C. Mascolo, Y. Pei, and T.A. Ring, Room Temperature Co-precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases, Materials, 2013, 6, p 5549–5567CrossRef M.C. Mascolo, Y. Pei, and T.A. Ring, Room Temperature Co-precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases, Materials, 2013, 6, p 5549–5567CrossRef
21.
go back to reference N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, and J. Prasad, Co-precipitation Method of Synthesis and Characterization of Iron Oxide Nanoparticles, J. Sci. Ind. Res., 2014, 73, p 87–90 N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, and J. Prasad, Co-precipitation Method of Synthesis and Characterization of Iron Oxide Nanoparticles, J. Sci. Ind. Res., 2014, 73, p 87–90
22.
go back to reference B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev., 2004, 104–9, p 3893–3946CrossRef B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev., 2004, 104–9, p 3893–3946CrossRef
23.
go back to reference T. Stewart, P. Douglas, J. McCarthy, and A. Schulte, Silver-Metal Oxide Contact Materials Fabricated by Spray Coprecipitation, IEEE Trans. Parts Hybrids Packag., 1977, 13–1, p 35–41CrossRef T. Stewart, P. Douglas, J. McCarthy, and A. Schulte, Silver-Metal Oxide Contact Materials Fabricated by Spray Coprecipitation, IEEE Trans. Parts Hybrids Packag., 1977, 13–1, p 35–41CrossRef
24.
go back to reference G.J. Choi, S.K. Lee, K.J. Woo, K.K. Koo, and Y.S. Cho, Characteristics of BaTiO3 Particles Prepared by Spray-Coprecipitation Method Using Titanium Acylate-Based Precursors, Chem. Mater., 1998, 10, p 4104–4113CrossRef G.J. Choi, S.K. Lee, K.J. Woo, K.K. Koo, and Y.S. Cho, Characteristics of BaTiO3 Particles Prepared by Spray-Coprecipitation Method Using Titanium Acylate-Based Precursors, Chem. Mater., 1998, 10, p 4104–4113CrossRef
25.
go back to reference T.C. Chou, T.R. Ling, M.C. Yang, and C.C. Liu, Micro and Nano Scale Metal Oxide Hollow Particles Produced by Spray Precipitation in a Liquid–Liquid System, Mater. Sci. Eng., A, 2003, 359(1–2), p 24–30CrossRef T.C. Chou, T.R. Ling, M.C. Yang, and C.C. Liu, Micro and Nano Scale Metal Oxide Hollow Particles Produced by Spray Precipitation in a Liquid–Liquid System, Mater. Sci. Eng., A, 2003, 359(1–2), p 24–30CrossRef
26.
go back to reference D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, I.B. Shim, M.H. Lee, and Y.K. Lee, Tuning of Magnetite Nanoparticles to Hyperthermic Thermoseed by Controlled Spray Method, J. Mater. Sci., 2006, 41–22, p 7279–7282CrossRef D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, I.B. Shim, M.H. Lee, and Y.K. Lee, Tuning of Magnetite Nanoparticles to Hyperthermic Thermoseed by Controlled Spray Method, J. Mater. Sci., 2006, 41–22, p 7279–7282CrossRef
27.
go back to reference W. Zhang, H. Shen, M.Q. Xie, L. Zhuang, Y.Y. Deng, S.L. Hu, and Y.Y. Lin, Synthesis of Carboxymethyl-Chitosan-Bound Magnetic Nanoparticles by the Spraying Co-precipitation Method, Scripta Mater., 2008, 59–2, p 211–214CrossRef W. Zhang, H. Shen, M.Q. Xie, L. Zhuang, Y.Y. Deng, S.L. Hu, and Y.Y. Lin, Synthesis of Carboxymethyl-Chitosan-Bound Magnetic Nanoparticles by the Spraying Co-precipitation Method, Scripta Mater., 2008, 59–2, p 211–214CrossRef
28.
go back to reference D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, K.D. Kim, H. Park, I.B. Shim, and Y.K. Lee, Biodistribution of Chitosan-Based Magnetite Suspensions for Targeted Hyperthermia in ICR Mice, IEEE Trans. Magn., 2005, 41(10), p 4158–4160CrossRef D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, K.D. Kim, H. Park, I.B. Shim, and Y.K. Lee, Biodistribution of Chitosan-Based Magnetite Suspensions for Targeted Hyperthermia in ICR Mice, IEEE Trans. Magn., 2005, 41(10), p 4158–4160CrossRef
29.
go back to reference A.H. Lefebvre, Atomization and Sprays, 1st ed., Taylor & Francis Ltd., Milton Park, 1988CrossRef A.H. Lefebvre, Atomization and Sprays, 1st ed., Taylor & Francis Ltd., Milton Park, 1988CrossRef
30.
go back to reference J.C. Lasheras and E.J. Hopfinger, Liquid Jet Instability and Atomization in a Coaxial Gas Stream, &#x200E, Annu. Rev. Fluid Mech., 2000, 32, p 275–308CrossRef J.C. Lasheras and E.J. Hopfinger, Liquid Jet Instability and Atomization in a Coaxial Gas Stream, &#x200E, Annu. Rev. Fluid Mech., 2000, 32, p 275–308CrossRef
31.
go back to reference B.D. Hall, D. Zanchet, and D. Ugarte, Estimating Nanoparticle Size from Diffraction Measurements, J. Appl. Crystallogr., 2000, 33, p 1335–1341CrossRef B.D. Hall, D. Zanchet, and D. Ugarte, Estimating Nanoparticle Size from Diffraction Measurements, J. Appl. Crystallogr., 2000, 33, p 1335–1341CrossRef
32.
go back to reference C.H. Burnside, Role of Ferric Oxide Surface Area in Propellant Burn Rate Enhancement (First Step Toward Modeling), Defense Technical Information Center ADA013855, 1975 C.H. Burnside, Role of Ferric Oxide Surface Area in Propellant Burn Rate Enhancement (First Step Toward Modeling), Defense Technical Information Center ADA013855, 1975
33.
go back to reference R.A. Chandru, S. Patra, C. Oommen, N. Munichandraiah, and B.N. Raghunandan, Exceptional Activity of Mesoporous β-MnO2 in the Catalytic Thermal Sensitization of Ammonium Perchlorate, J. Mater. Chem., 2012, 22, p 6536–6538CrossRef R.A. Chandru, S. Patra, C. Oommen, N. Munichandraiah, and B.N. Raghunandan, Exceptional Activity of Mesoporous β-MnO2 in the Catalytic Thermal Sensitization of Ammonium Perchlorate, J. Mater. Chem., 2012, 22, p 6536–6538CrossRef
34.
go back to reference S. Paulose, R. Raghavan, and B.K. George, Copper Oxide Alumina Composite Via Template assisted Sol–Gel Method for Ammonium Perchlorate Decomposition, J. Ind. Eng. Chem., 2017, 53, p 155–163CrossRef S. Paulose, R. Raghavan, and B.K. George, Copper Oxide Alumina Composite Via Template assisted Sol–Gel Method for Ammonium Perchlorate Decomposition, J. Ind. Eng. Chem., 2017, 53, p 155–163CrossRef
Metadata
Title
Initial Studies on Development of High-Performance Nano-structured Fe2O3 Catalysts for Solid Rocket Propellants
Authors
R. Arun Chandru
Rekha P. Patel
Charlie Oommen
B. N. Raghunandan
Publication date
02-01-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3812-x

Other articles of this Issue 2/2019

Journal of Materials Engineering and Performance 2/2019 Go to the issue

Premium Partners