Skip to main content
Top
Published in:

24-07-2020

Initializing k-means Clustering by Bootstrap and Data Depth

Authors: Aurora Torrente, Juan Romo

Published in: Journal of Classification | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The k-means algorithm is widely used in various research fields because of its fast convergence to the cost function minima; however, it frequently gets stuck in local optima as it is sensitive to initial conditions. This paper explores a simple, computationally feasible method, which provides k-means with a set of initial seeds to cluster datasets of arbitrary dimensions. Our technique consists of two stages: firstly, we use the original data space to obtain a set of prototypes (cluster centers) by applying k-means to bootstrap replications of the data and, secondly, we cluster the space of centers, which has tighter (thus easier to separate) groups, and search the deepest point in each assembled cluster using a depth notion. We test this method with simulated and real data, compare it with commonly used k-means initialization algorithms, and show that it is feasible and more efficient than previous proposals in many situations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Initializing k-means Clustering by Bootstrap and Data Depth
Authors
Aurora Torrente
Juan Romo
Publication date
24-07-2020
Publisher
Springer US
Published in
Journal of Classification / Issue 2/2021
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-020-09372-3

Premium Partner