Skip to main content
Top

2011 | OriginalPaper | Chapter

Injectable Materials for Myocardial Tissue Engineering

Authors : Jennifer M. Singelyn, Karen L. Christman

Published in: Myocardial Tissue Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Injectable materials have gained recent focus as therapeutic alternatives to treat and prevent heart failure post-myocardial infarction. These materials offer the potential to treat the damaged region of the heart through minimally invasive catheter delivery. A variety of naturally derived and inspired materials, as well as synthetic materials have been explored as potential extracellular matrix replacement scaffolds to prevent a decline in cardiac function and/or improve cell transplant survival. Most recently, decellularized matrices have been suggested, to provide a cardiac-specific biomimetic replacement. This chapter will review the variety of materials that have been explored as injectable therapies for cardiac repair, with a particular focus on decellularized matrices. Additionally, this chapter will review the injection systems currently available, and the design criteria materials must meet for compatibility with minimally invasive catheter delivery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Christman, K.L., Lee, R.J.: Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 48(5), 907–913 (2006)CrossRef Christman, K.L., Lee, R.J.: Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 48(5), 907–913 (2006)CrossRef
2.
go back to reference Kellar, R.S., Shepherd, B.R., Larson, D.F., Naughton, G.K., Williams, S.K.: Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 11(11–12), 1678–1687 (2005)CrossRef Kellar, R.S., Shepherd, B.R., Larson, D.F., Naughton, G.K., Williams, S.K.: Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 11(11–12), 1678–1687 (2005)CrossRef
3.
go back to reference Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., et al.: Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000) Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., et al.: Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3), III56–III61 (2000)
4.
go back to reference Zimmermann, W.H., Didie, M., Wasmeier, G.H., Nixdorff, U., Hess, A., Melnychenko, I., et al.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002) Zimmermann, W.H., Didie, M., Wasmeier, G.H., Nixdorff, U., Hess, A., Melnychenko, I., et al.: Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(12 Suppl 1), I151–I157 (2002)
5.
go back to reference Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., et al.: In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124(1), 63–69 (2002)CrossRef Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., et al.: In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124(1), 63–69 (2002)CrossRef
6.
go back to reference Robinson, K.A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N.A.F., et al.: Extracellular matrix scaffold for cardiac repair. Circulation 112(suppl I), I-135–I-143 (2005) Robinson, K.A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N.A.F., et al.: Extracellular matrix scaffold for cardiac repair. Circulation 112(suppl I), I-135–I-143 (2005)
7.
go back to reference Badylak, S.F., Obermiller, J., Geddes, L., Matheny, R.: Extracellular matrix for myocardial repair. The Heart Surgery Forum 6(2), E20–E26 (2002) Badylak, S.F., Obermiller, J., Geddes, L., Matheny, R.: Extracellular matrix for myocardial repair. The Heart Surgery Forum 6(2), E20–E26 (2002)
8.
go back to reference Leor, J., Amsalem, Y., Cohen, S.: Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105(2), 151–163 (2005)CrossRef Leor, J., Amsalem, Y., Cohen, S.: Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105(2), 151–163 (2005)CrossRef
9.
go back to reference Smits, P.C., van Geuns, R.J., Poldermans, D., Bountioukos, M., Onderwater, E.E., Lee, C.H., et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42(12), 2063–2069 (2003)CrossRef Smits, P.C., van Geuns, R.J., Poldermans, D., Bountioukos, M., Onderwater, E.E., Lee, C.H., et al.: Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42(12), 2063–2069 (2003)CrossRef
10.
go back to reference Dib, N., Diethrich, E.B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al.: Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J. Endovasc. Ther. 9(3), 313–319 (2002)CrossRef Dib, N., Diethrich, E.B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al.: Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J. Endovasc. Ther. 9(3), 313–319 (2002)CrossRef
11.
go back to reference Dib, N., Diethrich, E.B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al.: Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J. Endovasc. Ther. 9(3), 313–319 (2002)CrossRef Dib, N., Diethrich, E.B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al.: Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J. Endovasc. Ther. 9(3), 313–319 (2002)CrossRef
12.
go back to reference Fuchs, S., Kornowski, R., Weisz, G., Satler, L.F., Smits, P.C., Okubagzi, P., et al.: Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am. J. Cardiol. 97(6), 823–829 (2006)CrossRef Fuchs, S., Kornowski, R., Weisz, G., Satler, L.F., Smits, P.C., Okubagzi, P., et al.: Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am. J. Cardiol. 97(6), 823–829 (2006)CrossRef
13.
go back to reference Fuchs, S., Satler, L.F., Kornowski, R., Okubagzi, P., Weisz, G., Baffour, R., et al.: Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol. 41(10), 1721–1724 (2003)CrossRef Fuchs, S., Satler, L.F., Kornowski, R., Okubagzi, P., Weisz, G., Baffour, R., et al.: Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol. 41(10), 1721–1724 (2003)CrossRef
14.
go back to reference Dib, N., Michler, R.E., Pagani, F.D., Wright, S., Kereiakes, D.J., Lengerich, R., et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112(12), 1748–1755 (2005)CrossRef Dib, N., Michler, R.E., Pagani, F.D., Wright, S., Kereiakes, D.J., Lengerich, R., et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112(12), 1748–1755 (2005)CrossRef
15.
go back to reference Perin, E.C., Dohmann, H.F., Borojevic, R., Silva, S.A., Sousa, A.L., Mesquita, C.T., et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18), 2294–2302 (2003)CrossRef Perin, E.C., Dohmann, H.F., Borojevic, R., Silva, S.A., Sousa, A.L., Mesquita, C.T., et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18), 2294–2302 (2003)CrossRef
16.
go back to reference Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355(12), 1199–1209 (2006)CrossRef Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355(12), 1199–1209 (2006)CrossRef
17.
go back to reference Davis, M.E., Hsieh, P.C., Grodzinsky, A.J., Lee, R.T.: Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97(1), 8–15 (2005)CrossRef Davis, M.E., Hsieh, P.C., Grodzinsky, A.J., Lee, R.T.: Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97(1), 8–15 (2005)CrossRef
18.
go back to reference Christman, K.L., Vardanian, A.J., Fang, Q., Sievers, R.E., Fok, H.H., Lee, R.J.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3), 654–660 (2004)CrossRef Christman, K.L., Vardanian, A.J., Fang, Q., Sievers, R.E., Fok, H.H., Lee, R.J.: Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol. 44(3), 654–660 (2004)CrossRef
19.
go back to reference Zhang, G., Hu, Q., Braunlin, E.A., Suggs, L.J., Zhang, J.: Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng. Part A 14(6), 1025–1036 (2008)CrossRef Zhang, G., Hu, Q., Braunlin, E.A., Suggs, L.J., Zhang, J.: Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng. Part A 14(6), 1025–1036 (2008)CrossRef
20.
go back to reference Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)CrossRef Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)CrossRef
21.
go back to reference Dai, W., Wold, L.E., Dow, J.S., Kloner, R.A.: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46(4), 714–719 (2005)CrossRef Dai, W., Wold, L.E., Dow, J.S., Kloner, R.A.: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46(4), 714–719 (2005)CrossRef
22.
go back to reference Huang, N.F., Yu, J., Sievers, R., Li, S., Lee, R.J.: Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 11(11–12), 1860–1866 (2005)CrossRef Huang, N.F., Yu, J., Sievers, R., Li, S., Lee, R.J.: Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 11(11–12), 1860–1866 (2005)CrossRef
23.
go back to reference Thompson, C.A., Nasseri, B.A., Makower, J., Houser, S., McGarry, M., Lamson, T., et al.: Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J. Am. Coll. Cardiol. 41(11), 1964–1971 (2003)CrossRef Thompson, C.A., Nasseri, B.A., Makower, J., Houser, S., McGarry, M., Lamson, T., et al.: Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J. Am. Coll. Cardiol. 41(11), 1964–1971 (2003)CrossRef
24.
go back to reference Zhang, P., Zhang, H., Wang, H., Wei, Y., Hu, S.: Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif. Organs 30(2), 86–93 (2006)CrossRef Zhang, P., Zhang, H., Wang, H., Wei, Y., Hu, S.: Artificial matrix helps neonatal cardiomyocytes restore injured myocardium in rats. Artif. Organs 30(2), 86–93 (2006)CrossRef
25.
go back to reference Christman, K.L., Fang, Q., Kim, A.J., Sievers, R.E., Fok, H.H., Candia, A.F., et al.: Pleiotrophin induces formation of functional neovasculature in vivo. Biochem. Biophys. Res. Commun. 332(4), 1146–1152 (2005)CrossRef Christman, K.L., Fang, Q., Kim, A.J., Sievers, R.E., Fok, H.H., Candia, A.F., et al.: Pleiotrophin induces formation of functional neovasculature in vivo. Biochem. Biophys. Res. Commun. 332(4), 1146–1152 (2005)CrossRef
26.
go back to reference Christman, K.L., Fok, H.H., Sievers, R.E., Fang, Q., Lee, R.J.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10, 403–409 (2004)CrossRef Christman, K.L., Fok, H.H., Sievers, R.E., Fang, Q., Lee, R.J.: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 10, 403–409 (2004)CrossRef
27.
go back to reference Ryu, J.H., Kim, I.K., Cho, S.W., Cho, M.C., Hwang, K.K., Piao, H., et al.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3), 319–326 (2005)CrossRef Ryu, J.H., Kim, I.K., Cho, S.W., Cho, M.C., Hwang, K.K., Piao, H., et al.: Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 26(3), 319–326 (2005)CrossRef
28.
go back to reference Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl), I173–I177 (2005) Kofidis, T., Lebl, D.R., Martinez, E.C., Hoyt, G., Tanaka, M., Robbins, R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl), I173–I177 (2005)
29.
go back to reference Davis, M.E., Motion, J.P., Narmoneva, D.A., Takahashi, T., Hakuno, D., Kamm, R.D., et al.: Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4), 442–450 (2005)CrossRef Davis, M.E., Motion, J.P., Narmoneva, D.A., Takahashi, T., Hakuno, D., Kamm, R.D., et al.: Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4), 442–450 (2005)CrossRef
30.
go back to reference Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., et al.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef Landa, N., Miller, L., Feinberg, M.S., Holbova, R., Shachar, M., Freeman, I., et al.: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11), 1388–1396 (2008)CrossRef
31.
go back to reference Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)CrossRef Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al.: Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J. Am. Coll. Cardiol. 54(11), 1014–1023 (2009)CrossRef
32.
go back to reference Lu, W.N., Lu, S.H., Wang, H.B., Li, D.X., Duan, C.M., Liu, Z.Q., et al.: Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng. Part A 14, 1591–1601 (2008) CrossRef Lu, W.N., Lu, S.H., Wang, H.B., Li, D.X., Duan, C.M., Liu, Z.Q., et al.: Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng. Part A 14, 1591–1601 (2008) CrossRef
33.
go back to reference Singelyn, J.M., DeQuach, J.A., Seif-Naraghi, S.B., Littlefield, R.B., Schup-Magoffin, P.J., Christman, K.L.: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29), 5409–5416 (2009)CrossRef Singelyn, J.M., DeQuach, J.A., Seif-Naraghi, S.B., Littlefield, R.B., Schup-Magoffin, P.J., Christman, K.L.: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29), 5409–5416 (2009)CrossRef
34.
go back to reference Seif-Naraghi, S.B., Salvatore, M.A., Schup-Magoffin, P.J., Hu, D.P., Christman, K.L.: Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. Part A (in press) Seif-Naraghi, S.B., Salvatore, M.A., Schup-Magoffin, P.J., Hu, D.P., Christman, K.L.: Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. Part A (in press)
35.
go back to reference Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., et al.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef Zimmermann, W.H., Melnychenko, I., Wasmeier, G., Didie, M., Naito, H., Nixdorff, U., et al.: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4), 452–458 (2006)CrossRef
36.
go back to reference Sierra, D.H.: Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J. Biomater. Appl. 7(4), 309–352 (1993)MathSciNetCrossRef Sierra, D.H.: Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J. Biomater. Appl. 7(4), 309–352 (1993)MathSciNetCrossRef
37.
go back to reference Naito, M., Stirk, C.M., Smith, E.B., Thompson, W.D.: Smooth muscle cell outgrowth stimulated by fibrin degradation products. The potential role of fibrin fragment E in restenosis and atherogenesis. Thromb. Res. 98(2), 165–174 (2000)CrossRef Naito, M., Stirk, C.M., Smith, E.B., Thompson, W.D.: Smooth muscle cell outgrowth stimulated by fibrin degradation products. The potential role of fibrin fragment E in restenosis and atherogenesis. Thromb. Res. 98(2), 165–174 (2000)CrossRef
38.
go back to reference Thompson, W.D., Smith, E.B., Stirk, C.M., Marshall, F.I., Stout, A.J., Kocchar, A.: Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol 168(1), 47–53 (1992)CrossRef Thompson, W.D., Smith, E.B., Stirk, C.M., Marshall, F.I., Stout, A.J., Kocchar, A.: Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol 168(1), 47–53 (1992)CrossRef
39.
go back to reference Chekanov, V., Akhtar, M., Tchekanov, G., Dangas, G., Shehzad, M.Z., Tio, F., et al.: Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin. Electrophysiol. 26(1 Pt 2), 496–499 (2003)CrossRef Chekanov, V., Akhtar, M., Tchekanov, G., Dangas, G., Shehzad, M.Z., Tio, F., et al.: Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin. Electrophysiol. 26(1 Pt 2), 496–499 (2003)CrossRef
40.
go back to reference Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Robey, P.G., Tryggvason, K., Martin, G.R.: Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21(24), 6188–6193 (1982)CrossRef Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Robey, P.G., Tryggvason, K., Martin, G.R.: Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21(24), 6188–6193 (1982)CrossRef
41.
go back to reference Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., et al.: Basement membrane complexes with biological activity. Biochemistry 25(2), 312–318 (1986)CrossRef Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., et al.: Basement membrane complexes with biological activity. Biochemistry 25(2), 312–318 (1986)CrossRef
42.
go back to reference Albini, A., Melchiori, A., Garofalo, A., Noonan, D.M., Basolo, F., Taraboletti, G., et al.: Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int. J. Cancer 52(2), 234–240 (1992)CrossRef Albini, A., Melchiori, A., Garofalo, A., Noonan, D.M., Basolo, F., Taraboletti, G., et al.: Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int. J. Cancer 52(2), 234–240 (1992)CrossRef
43.
go back to reference Yue, W., Brodie, A.: MCF-7 human breast carcinomas in nude mice as a model for evaluating aromatase inhibitors. J. Steroid Biochem. Mol. Biol. 44(4–6), 671–673 (1993)CrossRef Yue, W., Brodie, A.: MCF-7 human breast carcinomas in nude mice as a model for evaluating aromatase inhibitors. J. Steroid Biochem. Mol. Biol. 44(4–6), 671–673 (1993)CrossRef
44.
go back to reference Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9), 1015–1024 (2007)CrossRef Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25(9), 1015–1024 (2007)CrossRef
45.
go back to reference Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C., Lee, R.T.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1), 237–248 (2006)CrossRef Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C., Lee, R.T.: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1), 237–248 (2006)CrossRef
46.
go back to reference Narmoneva, D.A., Vukmirovic, R., Davis, M.E., Kamm, R.D., Lee, R.T.: Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110(8), 962–968 (2004)CrossRef Narmoneva, D.A., Vukmirovic, R., Davis, M.E., Kamm, R.D., Lee, R.T.: Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110(8), 962–968 (2004)CrossRef
47.
go back to reference Narmoneva, D.A., Oni, O., Sieminski, A.L., Zhang, S., Gertler, J.P., Kamm, R.D., et al.: Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23), 4837–4846 (2005)CrossRef Narmoneva, D.A., Oni, O., Sieminski, A.L., Zhang, S., Gertler, J.P., Kamm, R.D., et al.: Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23), 4837–4846 (2005)CrossRef
48.
go back to reference Davis, M.E., Hsieh, P.C., Takahashi, T., Song, Q., Zhang, S., Kamm, R.D., et al.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103(21), 8155–8160 (2006)CrossRef Davis, M.E., Hsieh, P.C., Takahashi, T., Song, Q., Zhang, S., Kamm, R.D., et al.: Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103(21), 8155–8160 (2006)CrossRef
49.
go back to reference Padin-Iruegas, M.E.M.D., Misao, Y.M.D., Davis, M.E.P., Segers, V.F.M.M.D.P., Esposito, G.P., Tokunou, T.M.D.P., et al.: Cardiac Progenitor Cells and Biotinylated Insulin-Like Growth Factor-1 Nanofibers Improve Endogenous and Exogenous Myocardial Regeneration After Infarction. Circulation 120(10), 876–887 (2009)CrossRef Padin-Iruegas, M.E.M.D., Misao, Y.M.D., Davis, M.E.P., Segers, V.F.M.M.D.P., Esposito, G.P., Tokunou, T.M.D.P., et al.: Cardiac Progenitor Cells and Biotinylated Insulin-Like Growth Factor-1 Nanofibers Improve Endogenous and Exogenous Myocardial Regeneration After Infarction. Circulation 120(10), 876–887 (2009)CrossRef
50.
go back to reference Hsieh, P.C., MacGillivray, C., Gannon, J., Cruz, F.U., Lee, R.T.: Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114(7), 637–644 (2006)CrossRef Hsieh, P.C., MacGillivray, C., Gannon, J., Cruz, F.U., Lee, R.T.: Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114(7), 637–644 (2006)CrossRef
51.
go back to reference Dubois, G., Segers, V.F., Bellamy, V., Sabbah, L., Peyrard, S., Bruneval, P., et al.: Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 222–228 (2008) Dubois, G., Segers, V.F., Bellamy, V., Sabbah, L., Peyrard, S., Bruneval, P., et al.: Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J. Biomed. Mater. Res. B Appl. Biomater. 87(1), 222–228 (2008)
52.
go back to reference Wee, S., Gombotz, W.R.: Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3), 267–285 (1998)CrossRef Wee, S., Gombotz, W.R.: Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3), 267–285 (1998)CrossRef
53.
go back to reference Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001)CrossRef Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001)CrossRef
54.
go back to reference Hao, X., Silva, E.A., Mansson-Broberg, A., Grinnemo, K.H., Siddiqui, A.J., Dellgren, G., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef Hao, X., Silva, E.A., Mansson-Broberg, A., Grinnemo, K.H., Siddiqui, A.J., Dellgren, G., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)CrossRef
55.
go back to reference Yu, J., Gu, Y., Du, K.T., Mihardja, S., Sievers, R.E., Lee, R.J.: The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5), 751–756 (2009)CrossRef Yu, J., Gu, Y., Du, K.T., Mihardja, S., Sievers, R.E., Lee, R.J.: The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5), 751–756 (2009)CrossRef
56.
go back to reference Khor, E., Lim, L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24(13), 2339–2349 (2003)CrossRef Khor, E., Lim, L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24(13), 2339–2349 (2003)CrossRef
57.
go back to reference Badylak, S.F., Freytes, D.O., Gilbert, T.W.: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5(1), 1–13 (2009)CrossRef Badylak, S.F., Freytes, D.O., Gilbert, T.W.: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5(1), 1–13 (2009)CrossRef
58.
go back to reference Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., et al.: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14(2), 213–221 (2008)CrossRef
59.
go back to reference Wainwright, J.M., Czajka, C.A., Patel, U.B., Freytes, D.O., Tobita, K., Gilbert, T.W., et al.: Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods 16, 525–532 (2009)CrossRef Wainwright, J.M., Czajka, C.A., Patel, U.B., Freytes, D.O., Tobita, K., Gilbert, T.W., et al.: Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods 16, 525–532 (2009)CrossRef
60.
go back to reference Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials 27(19), 3675–3683 (2006) Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials 27(19), 3675–3683 (2006)
61.
go back to reference Jawad, H., Ali, N.N., Lyon, A.R., Chen, Q.Z., Harding, S.E., Boccaccini, A.R.: Myocardial tissue engineering: a review. J. Tissue Eng. Regen. Med. 1(5), 327–342 (2007)CrossRef Jawad, H., Ali, N.N., Lyon, A.R., Chen, Q.Z., Harding, S.E., Boccaccini, A.R.: Myocardial tissue engineering: a review. J. Tissue Eng. Regen. Med. 1(5), 327–342 (2007)CrossRef
62.
go back to reference Braga-Vilela, A.S., Pimentel, E.R., Marangoni, S., Toyama, M.H., de Campos Vidal, B.: Extracellular matrix of porcine pericardium: biochemistry and collagen architecture. J. Membr. Biol. 221(1), 15–25 (2008)CrossRef Braga-Vilela, A.S., Pimentel, E.R., Marangoni, S., Toyama, M.H., de Campos Vidal, B.: Extracellular matrix of porcine pericardium: biochemistry and collagen architecture. J. Membr. Biol. 221(1), 15–25 (2008)CrossRef
63.
go back to reference Fuster, V.: Hurst’s the Heart, 10th edn. McGraw-Hill Medical Publishing Division, New York (2001) Fuster, V.: Hurst’s the Heart, 10th edn. McGraw-Hill Medical Publishing Division, New York (2001)
64.
go back to reference David, T.E., Feindel, C.M., Ropchan, G.V.: Reconstruction of the left ventricle with autologous pericardium. J. Thorac. Cardiovasc. Surg. 94(5), 710–714 (1987) David, T.E., Feindel, C.M., Ropchan, G.V.: Reconstruction of the left ventricle with autologous pericardium. J. Thorac. Cardiovasc. Surg. 94(5), 710–714 (1987)
65.
go back to reference Duran, C.M., Gometza, B., Kumar, N., Gallo, R., Martin-Duran, R.: Aortic valve replacement with freehand autologous pericardium. J. Thorac. Cardiovasc. Surg. 110(2), 511–516 (1995)CrossRef Duran, C.M., Gometza, B., Kumar, N., Gallo, R., Martin-Duran, R.: Aortic valve replacement with freehand autologous pericardium. J. Thorac. Cardiovasc. Surg. 110(2), 511–516 (1995)CrossRef
66.
go back to reference Roberts, N.B., Taylor, W.H.: The preparation and purification of individual human pepsins by using diethylaminoethyl-cellulose. Biochem. J. 169(3), 607–615 (1978) Roberts, N.B., Taylor, W.H.: The preparation and purification of individual human pepsins by using diethylaminoethyl-cellulose. Biochem. J. 169(3), 607–615 (1978)
67.
go back to reference Mukherjee, R., Zavadzkas, J.A., Saunders, S.M., McLean, J.E., Jeffords, L.B., Beck, C., et al.: Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann. Thorac. Surg. 86(4), 1268–1276 (2008)CrossRef Mukherjee, R., Zavadzkas, J.A., Saunders, S.M., McLean, J.E., Jeffords, L.B., Beck, C., et al.: Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann. Thorac. Surg. 86(4), 1268–1276 (2008)CrossRef
68.
go back to reference Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L.J., Zhang, J.: Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng. 13(8), 2063–2071 (2007)CrossRef Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L.J., Zhang, J.: Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng. 13(8), 2063–2071 (2007)CrossRef
69.
go back to reference Wang, T., Wu, D.Q., Jiang, X.J., Zhang, X.Z., Li, X.Y., Zhang, J.F., et al.: Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur. J. Heart Fail. 11(1), 14–19 (2009)CrossRef Wang, T., Wu, D.Q., Jiang, X.J., Zhang, X.Z., Li, X.Y., Zhang, J.F., et al.: Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur. J. Heart Fail. 11(1), 14–19 (2009)CrossRef
70.
go back to reference Fujimoto, K.L., Ma, Z., Nelson, D.M., Hashizume, R., Guan, J., Tobita, K., et al.: Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 30(26), 4357–4368 (2009)CrossRef Fujimoto, K.L., Ma, Z., Nelson, D.M., Hashizume, R., Guan, J., Tobita, K., et al.: Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 30(26), 4357–4368 (2009)CrossRef
71.
go back to reference VandeVondele, S., Voros, J., Hubbell, J.A.: RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82(7), 784–790 (2003)CrossRef VandeVondele, S., Voros, J., Hubbell, J.A.: RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82(7), 784–790 (2003)CrossRef
72.
go back to reference Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P., Davies, N.: A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J. Card. Fail. 15(7), 629–636 (2009)CrossRef Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P., Davies, N.: A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J. Card. Fail. 15(7), 629–636 (2009)CrossRef
73.
go back to reference Jin, H., Wyss, J.M., Yang, R., Schwall, R.: The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr. Pharm. Des. 10(20), 2525–2533 (2004)CrossRef Jin, H., Wyss, J.M., Yang, R., Schwall, R.: The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr. Pharm. Des. 10(20), 2525–2533 (2004)CrossRef
74.
go back to reference Kofidis, T., de Bruin, J.L., Hoyt, G., Lebl, D.R., Tanaka, M., Yamane, T., et al.: Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J. Thorac. Cardiovasc. Surg. 128(4), 571–578 (2004) Kofidis, T., de Bruin, J.L., Hoyt, G., Lebl, D.R., Tanaka, M., Yamane, T., et al.: Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J. Thorac. Cardiovasc. Surg. 128(4), 571–578 (2004)
75.
go back to reference Kornowski, R., Leon, M.B., Fuchs, S., Vodovotz, Y., Flynn, M.A., Gordon, D.A., et al.: Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J. Am. Coll. Cardiol. 35(4), 1031–1039 (2000)CrossRef Kornowski, R., Leon, M.B., Fuchs, S., Vodovotz, Y., Flynn, M.A., Gordon, D.A., et al.: Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J. Am. Coll. Cardiol. 35(4), 1031–1039 (2000)CrossRef
76.
go back to reference Laham, R.J., Post, M., Rezaee, M., Donnell-Fink, L., Wykrzykowska, J.J., Lee, S.U., et al.: Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab. Dispos. 33(8), 1101–1107 (2005)CrossRef Laham, R.J., Post, M., Rezaee, M., Donnell-Fink, L., Wykrzykowska, J.J., Lee, S.U., et al.: Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab. Dispos. 33(8), 1101–1107 (2005)CrossRef
77.
go back to reference Baklanov, D.V., Moodie, K.M., McCarthy, F.E., Mandrusov, E., Chiu, J., Aswonge, G., et al.: Comparison of transendocardial and retrograde coronary venous intramyocardial catheter delivery systems in healthy and infarcted pigs. Catheter. Cardiovasc. Interv. 68(3), 416–423 (2006)CrossRef Baklanov, D.V., Moodie, K.M., McCarthy, F.E., Mandrusov, E., Chiu, J., Aswonge, G., et al.: Comparison of transendocardial and retrograde coronary venous intramyocardial catheter delivery systems in healthy and infarcted pigs. Catheter. Cardiovasc. Interv. 68(3), 416–423 (2006)CrossRef
78.
go back to reference Chachques, J.C., Azarine, A., Mousseaux, E., El Serafi, M., Cortes-Morichetti, M., Carpentier, A.F.: MRI evaluation of local myocardial treatments: epicardial versus endocardial (Cell-Fix catheter) injections. J. Interv. Cardiol. 20(3), 188–196 (2007)CrossRef Chachques, J.C., Azarine, A., Mousseaux, E., El Serafi, M., Cortes-Morichetti, M., Carpentier, A.F.: MRI evaluation of local myocardial treatments: epicardial versus endocardial (Cell-Fix catheter) injections. J. Interv. Cardiol. 20(3), 188–196 (2007)CrossRef
79.
go back to reference Krause, K., Jaquet, K., Schneider, C., Haupt, S., Lioznov, M.V., Otte, K.M., et al.: Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart 95(14), 1145–1152 (2009)CrossRef Krause, K., Jaquet, K., Schneider, C., Haupt, S., Lioznov, M.V., Otte, K.M., et al.: Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart 95(14), 1145–1152 (2009)CrossRef
80.
go back to reference Plewka, M., Krzeminska-Pakula, M., Lipiec, P., Peruga, J.Z., Jezewski, T., Kidawa, M., et al.: Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction. Am. J. Cardiol. 104(10):1336-1342CrossRef Plewka, M., Krzeminska-Pakula, M., Lipiec, P., Peruga, J.Z., Jezewski, T., Kidawa, M., et al.: Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction. Am. J. Cardiol. 104(10):1336-1342CrossRef
81.
go back to reference Laham, R.J., Rezaee, M., Post, M., Sellke, F.W., Braeckman, R.A., Hung, D., et al.: Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug. Metab. Dispos. 27(7), 821–826 (1999) Laham, R.J., Rezaee, M., Post, M., Sellke, F.W., Braeckman, R.A., Hung, D., et al.: Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug. Metab. Dispos. 27(7), 821–826 (1999)
82.
go back to reference Laham, R.J., Chronos, N.A., Pike, M., Leimbach, M.E., Udelson, J.E., Pearlman, J.D., et al.: Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol. 36(7), 2132–2139 (2000)CrossRef Laham, R.J., Chronos, N.A., Pike, M., Leimbach, M.E., Udelson, J.E., Pearlman, J.D., et al.: Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J. Am. Coll. Cardiol. 36(7), 2132–2139 (2000)CrossRef
83.
go back to reference Badylak, S.F.: The extracellular matrix as a biologic scaffold material. Biomaterials 28(25), 3587–3593 (2007)CrossRef Badylak, S.F.: The extracellular matrix as a biologic scaffold material. Biomaterials 28(25), 3587–3593 (2007)CrossRef
84.
go back to reference Uriel, S., Labay, E., Francis-Sedlak, M., Moya, M.L., Weichselbaum, R.R., Ervin, N., et al. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng. Part C Methods 15, 309–321 (2008)CrossRef Uriel, S., Labay, E., Francis-Sedlak, M., Moya, M.L., Weichselbaum, R.R., Ervin, N., et al. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng. Part C Methods 15, 309–321 (2008)CrossRef
85.
go back to reference Macfelda, K., Kapeller, B., Wilbacher, I., Losert, U.M.: Behavior of cardiomyocytes and skeletal muscle cells on different extracellular matrix components—relevance for cardiac tissue engineering. Artif. Organs 31(1), 4–12 (2007)CrossRef Macfelda, K., Kapeller, B., Wilbacher, I., Losert, U.M.: Behavior of cardiomyocytes and skeletal muscle cells on different extracellular matrix components—relevance for cardiac tissue engineering. Artif. Organs 31(1), 4–12 (2007)CrossRef
86.
go back to reference Brown, L.: Cardiac extracellular matrix: a dynamic entity. Am. J. Physiol. Heart Circ. Physiol. 289(3), H973–H974 (2005)CrossRef Brown, L.: Cardiac extracellular matrix: a dynamic entity. Am. J. Physiol. Heart Circ. Physiol. 289(3), H973–H974 (2005)CrossRef
87.
go back to reference Patel, Z.S., Mikos, A.G.: Angiogenesis with biomaterial-based drug- and cell-delivery systems. J. Biomater. Sci. Polym. Ed. 15(6), 701–726 (2004)CrossRef Patel, Z.S., Mikos, A.G.: Angiogenesis with biomaterial-based drug- and cell-delivery systems. J. Biomater. Sci. Polym. Ed. 15(6), 701–726 (2004)CrossRef
88.
go back to reference Nam, J., Huang, Y., Agarwal, S., Lannutti, J.: Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13(9), 2249–2257 (2007)CrossRef Nam, J., Huang, Y., Agarwal, S., Lannutti, J.: Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13(9), 2249–2257 (2007)CrossRef
89.
go back to reference Shake, J.G., Gruber, P.J., Baumgartner, W.A., Senechal, G., Meyers, J., Redmond, J.M., et al.: Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73(6), 1919–1925 (2002) (Discussion 1926)CrossRef Shake, J.G., Gruber, P.J., Baumgartner, W.A., Senechal, G., Meyers, J., Redmond, J.M., et al.: Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73(6), 1919–1925 (2002) (Discussion 1926)CrossRef
90.
go back to reference Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R.V., et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15), 1913–1918 (2002)CrossRef Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R.V., et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15), 1913–1918 (2002)CrossRef
Metadata
Title
Injectable Materials for Myocardial Tissue Engineering
Authors
Jennifer M. Singelyn
Karen L. Christman
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2010_44