Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Injection-Locking of Oscillators: An Overview

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides an overview of injection-locking and its applications in mixed-mode signal processing. The classification of oscillators is provided. It browses through the development of the injection-locking of oscillators with an emphasis on the characterization of injection-locked oscillators. First-harmonic methods for analyzing harmonic oscillators in weak injection are presented. It is followed with the presentation of first-harmonic methods for the analysis of harmonic oscillators in both weak and strong injection. Frequency regenerative injection specifically tailored for frequency multiplication and frequency division is explored. First-harmonic balance method capable of analyzing harmonic oscillators in first-harmonic, superharmonic, and subharmonic injections is studied. The progressive multiphase injection of ring oscillators with multiple injections is examined. The effective injection signaling arising from the nonlinearity of oscillators under injection and obtained by analyzing the Volterra circuits of the oscillators under injection is described. The chapter also briefly browses through the key applications of the injection-locking of oscillators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The parallel RLC network in Fig. 1.2 is derived from the network consisting of a series RL network depicting the spiral inductor and a parallel capacitor. The quality factor is dictated by the RL network.
 
2
Such an assumption is clearly not always correct since during the locking process, the period of the oscillator differs from that of the injection signal.
 
Literature
1.
go back to reference R. Adler, A study of locking phenomena in oscillators. Proc. Inst. Radio Eng. 34(6), 351–357 (1946) R. Adler, A study of locking phenomena in oscillators. Proc. Inst. Radio Eng. 34(6), 351–357 (1946)
2.
go back to reference E. Appleton, The automatic synchronization of triode oscillators. Proc. Camb. Philos. Soc. 21, 231–248 (1922–1923) E. Appleton, The automatic synchronization of triode oscillators. Proc. Camb. Philos. Soc. 21, 231–248 (1922–1923)
3.
go back to reference J. Bae, L. Yan, H. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid State Circuits 46(4), 928–937 (2011) J. Bae, L. Yan, H. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid State Circuits 46(4), 928–937 (2011)
4.
go back to reference J. Bae, H. Yoo, A 45 μW injection-locked FSK wake-up receiver with frequency-to-envelope conversion for crystal-less wireless body area network. IEEE J. Solid State Circuits 50(6), 1351–1360 (2015) J. Bae, H. Yoo, A 45 μW injection-locked FSK wake-up receiver with frequency-to-envelope conversion for crystal-less wireless body area network. IEEE J. Solid State Circuits 50(6), 1351–1360 (2015)
5.
go back to reference G. Balamurugan, N. Shanbhag, Modeling and mitigation of jitter in multi Gbps source-synchronous I/O links, in Proceedings of the International Conference on Computer Design (IEEE, Piscataway, 2003), pp. 254–260 G. Balamurugan, N. Shanbhag, Modeling and mitigation of jitter in multi Gbps source-synchronous I/O links, in Proceedings of the International Conference on Computer Design (IEEE, Piscataway, 2003), pp. 254–260
6.
go back to reference G. Beers, A frequency-dividing locked-in oscillator frequency-modulation receiver. Proc. Inst. Radio Eng. 32(12), 730–737 (1944) G. Beers, A frequency-dividing locked-in oscillator frequency-modulation receiver. Proc. Inst. Radio Eng. 32(12), 730–737 (1944)
8.
go back to reference A. Buonomo, A. Lo Schiavo, M. Awan, M. Asghar, M. Kennedy, A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation. IEEE Trans. Circuits Syst. I 60(12), 3126–3135 (2013)CrossRef A. Buonomo, A. Lo Schiavo, M. Awan, M. Asghar, M. Kennedy, A CMOS injection-locked frequency divider optimized for divide-by-two and divide-by-three operation. IEEE Trans. Circuits Syst. I 60(12), 3126–3135 (2013)CrossRef
9.
go back to reference B. Casper, F. O’Mahony, Clocking analysis, implementation and measurement techniques for high-speed data links—a tutorial. IEEE Trans. Circuits Syst. I 56(1), 17–39 (2009)MathSciNetCrossRef B. Casper, F. O’Mahony, Clocking analysis, implementation and measurement techniques for high-speed data links—a tutorial. IEEE Trans. Circuits Syst. I 56(1), 17–39 (2009)MathSciNetCrossRef
11.
go back to reference H. Chen, D. Chang, Y. Juang, S. Lu, A 30-GHz wideband low-power CMOS injection-locked frequency divider for 60-GHz wireless-LAN. IEEE Microwave Wireless Lett 18(2), 145–147 (2008)CrossRef H. Chen, D. Chang, Y. Juang, S. Lu, A 30-GHz wideband low-power CMOS injection-locked frequency divider for 60-GHz wireless-LAN. IEEE Microwave Wireless Lett 18(2), 145–147 (2008)CrossRef
14.
go back to reference J. Chien, L. Lu, Analysis and design of wideband injection-locked ring oscillators with multiple-input injection. IEEE J. Solid State Circuits 42(9), 1906–1915 (2007)CrossRef J. Chien, L. Lu, Analysis and design of wideband injection-locked ring oscillators with multiple-input injection. IEEE J. Solid State Circuits 42(9), 1906–1915 (2007)CrossRef
16.
go back to reference S. Cho, S. Kim, M. Choo, J. Lee, H. Ko, S. Jang, S. Chu, W. Bae, Y. Kim, D. Jeong, A 5-GHz subharmonically injection-locked all-digital PLL with complementary switched injection, in Proceedings of the European Solid-State Circuits Conference (IEEE, Piscataway, 2015), pp. 384–387 S. Cho, S. Kim, M. Choo, J. Lee, H. Ko, S. Jang, S. Chu, W. Bae, Y. Kim, D. Jeong, A 5-GHz subharmonically injection-locked all-digital PLL with complementary switched injection, in Proceedings of the European Solid-State Circuits Conference (IEEE, Piscataway, 2015), pp. 384–387
17.
go back to reference M. Choo, H. Ko, S. Cho, K. Lee, D. Jeong, An optimum injection-timing tracking loop for 5-GHz, 1.13-mW/GHz RO-based injection-locked PLL with 152-fs integrated jitter. IEEE Trans. Circuits Syst. II 65(12), 1819–1823 (2018)CrossRef M. Choo, H. Ko, S. Cho, K. Lee, D. Jeong, An optimum injection-timing tracking loop for 5-GHz, 1.13-mW/GHz RO-based injection-locked PLL with 152-fs integrated jitter. IEEE Trans. Circuits Syst. II 65(12), 1819–1823 (2018)CrossRef
18.
go back to reference Y. Chuang, S. Lee, S. Jang, J. Chao, M. Juang, A ring-oscillator-based wide locking range frequency divider. IEEE Microwave Wireless Compon. Lett. 16(8), 470–472 (2006)CrossRef Y. Chuang, S. Lee, S. Jang, J. Chao, M. Juang, A ring-oscillator-based wide locking range frequency divider. IEEE Microwave Wireless Compon. Lett. 16(8), 470–472 (2006)CrossRef
19.
go back to reference F. Ellinger, L. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, H. Jackel. 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans. Microwave Theory Tech. 52(5), 1382–1391 (2004)CrossRef F. Ellinger, L. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, H. Jackel. 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans. Microwave Theory Tech. 52(5), 1382–1391 (2004)CrossRef
21.
go back to reference D. Fraser, Synchrobization of oscillators by periodically interrupted waves. Proc. Inst. Radio Eng. 45(9), 1256–1268 (1957) D. Fraser, Synchrobization of oscillators by periodically interrupted waves. Proc. Inst. Radio Eng. 45(9), 1256–1268 (1957)
24.
go back to reference W. Grollitsch, R. Nonis, A fractional-N, all-digital injection-locked PLL with wide tuning range digitally controlled ring oscillator and bang-bang phase detection for temperature tracking in 40 nm CMOS, in Proceedings of the European Solid-State Circuits Conference (IEEE, Piscataway, 2016), pp. 201–204 W. Grollitsch, R. Nonis, A fractional-N, all-digital injection-locked PLL with wide tuning range digitally controlled ring oscillator and bang-bang phase detection for temperature tracking in 40 nm CMOS, in Proceedings of the European Solid-State Circuits Conference (IEEE, Piscataway, 2016), pp. 201–204
27.
go back to reference M. Hossain, A. Carusone, 7.4 Gb/s 6.8 mW source synchronous receiver in 65 nm CMOS. IEEE J. Solid State Circuits 46(6), 1337–1348 (2011)CrossRef M. Hossain, A. Carusone, 7.4 Gb/s 6.8 mW source synchronous receiver in 65 nm CMOS. IEEE J. Solid State Circuits 46(6), 1337–1348 (2011)CrossRef
29.
go back to reference K. Hu, T. Jiang, J. Wang, F. O’Mahony, P. Chiang, A 0.6 m W/Gb/s, 6.4–7.2 Gb/s serial link receiver using local injection-locked ring oscillators in 90 nm CMOS. IEEE J. Solid State Circuits 45(4), 899–908 (2010)CrossRef K. Hu, T. Jiang, J. Wang, F. O’Mahony, P. Chiang, A 0.6 m W/Gb/s, 6.4–7.2 Gb/s serial link receiver using local injection-locked ring oscillators in 90 nm CMOS. IEEE J. Solid State Circuits 45(4), 899–908 (2010)CrossRef
30.
go back to reference J. Hu, B. Otis, A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90 nm CMOS, in 2008 IEEE Radio Frequency Integrated Circuits Symposium (IEEE, Piscataway, 2008), pp. 665–668 J. Hu, B. Otis, A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90 nm CMOS, in 2008 IEEE Radio Frequency Integrated Circuits Symposium (IEEE, Piscataway, 2008), pp. 665–668
31.
go back to reference R. Huntoon, A. Weiss, Synchronization of oscillators. Proc. Inst. Radio Eng. 34(12), 1415–1423 (1947) R. Huntoon, A. Weiss, Synchronization of oscillators. Proc. Inst. Radio Eng. 34(12), 1415–1423 (1947)
33.
go back to reference S. Jang, C. Chang, W. Cheng, C. Lee, M. Juang, Low-power divide-by-3 injection-locked frequency dividers implemented with injection transformers. IET Electron. Lett. 45(5), 240–241 (2009)CrossRef S. Jang, C. Chang, W. Cheng, C. Lee, M. Juang, Low-power divide-by-3 injection-locked frequency dividers implemented with injection transformers. IET Electron. Lett. 45(5), 240–241 (2009)CrossRef
34.
go back to reference S. Jang, P. Lu, M. Juang, Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load. Microw. Opt. Technol. Lett. 50(10), 2722–2725 (2008)CrossRef S. Jang, P. Lu, M. Juang, Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load. Microw. Opt. Technol. Lett. 50(10), 2722–2725 (2008)CrossRef
36.
go back to reference U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 μW minimum RF input power. IEEE J. Solid State Circuits 38(10), 1602–1608 (2003)CrossRef U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 μW minimum RF input power. IEEE J. Solid State Circuits 38(10), 1602–1608 (2003)CrossRef
37.
go back to reference F. Kocer, M. Flynn, A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE J. Solid State Circuits 41(5), 1142–1148 (2006)CrossRef F. Kocer, M. Flynn, A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE J. Solid State Circuits 41(5), 1142–1148 (2006)CrossRef
39.
go back to reference S. Lee, S. Amakawa, N. Ishihara, K. Masu, Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 μm CMOS, in Proceedings of the IEEE MTT-S International Microwave Symposium (IEEE, Piscataway, 2010), pp. 1178–1181 S. Lee, S. Amakawa, N. Ishihara, K. Masu, Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 μm CMOS, in Proceedings of the IEEE MTT-S International Microwave Symposium (IEEE, Piscataway, 2010), pp. 1178–1181
40.
go back to reference M. Lee, W. Dally, T. Greer, H. Ng, R. Farjad-Rad, J. Poulton, R. Senthinathan, Jitter transfer characteristics of delay-locked loops—theories and design techniques. IEEE J. Solid State Circuits 38(4), 614–621 (2003)CrossRef M. Lee, W. Dally, T. Greer, H. Ng, R. Farjad-Rad, J. Poulton, R. Senthinathan, Jitter transfer characteristics of delay-locked loops—theories and design techniques. IEEE J. Solid State Circuits 38(4), 614–621 (2003)CrossRef
41.
go back to reference K. Lee, S. Kim, Y. Shin, D. Jeong, G. Lim, B. Kim, V. Da Costa, D. Lee, A jitter-tolerant 4.5 Gb/s CMOS interconnect for digital display, in 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC (IEEE, Piscataway, 1998), pp. 310–311 K. Lee, S. Kim, Y. Shin, D. Jeong, G. Lim, B. Kim, V. Da Costa, D. Lee, A jitter-tolerant 4.5 Gb/s CMOS interconnect for digital display, in 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC (IEEE, Piscataway, 1998), pp. 310–311
42.
go back to reference D. Lee, T. Lee, Y. Kim, Y. Kim, L. Kim, An injection locked PLL for power supply variation robustness using negative phase shift phenomenon of injection locked frequency divider, in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2015), pp.1–4 D. Lee, T. Lee, Y. Kim, Y. Kim, L. Kim, An injection locked PLL for power supply variation robustness using negative phase shift phenomenon of injection locked frequency divider, in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2015), pp.1–4
43.
go back to reference J. Lee, H. Wang, Study of subharmonically injection-locked PLLs. IEEE J. Solid State Circuits 44(5), 1539–1553 (2009)CrossRef J. Lee, H. Wang, Study of subharmonically injection-locked PLLs. IEEE J. Solid State Circuits 44(5), 1539–1553 (2009)CrossRef
46.
go back to reference L. Lin, L. Tee, P. Gray, A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture, in 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2000), pp. 204–205 L. Lin, L. Tee, P. Gray, A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture, in 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2000), pp. 204–205
47.
go back to reference S. Liu, Y. Zheng, W. M. Lim, W. Yang, Ring oscillator based injection locked frequency divider using dual injection paths. IEEE Microwave Wireless Compon. Lett. 25(5), 322–324 (2015)CrossRef S. Liu, Y. Zheng, W. M. Lim, W. Yang, Ring oscillator based injection locked frequency divider using dual injection paths. IEEE Microwave Wireless Compon. Lett. 25(5), 322–324 (2015)CrossRef
48.
go back to reference L. Lu, J. Chien, A wide-band CMOS injection-locked ring oscillator. IEEE Microwave Wireless Compon. Lett. 15(10):676–678 (2005)CrossRef L. Lu, J. Chien, A wide-band CMOS injection-locked ring oscillator. IEEE Microwave Wireless Compon. Lett. 15(10):676–678 (2005)CrossRef
49.
go back to reference R. Mackey, Injection locking of klystron oscillators. IRE Trans. Microwave Theory Tech. 10(4), 228–235 (1962)CrossRef R. Mackey, Injection locking of klystron oscillators. IRE Trans. Microwave Theory Tech. 10(4), 228–235 (1962)CrossRef
53.
go back to reference R. Miller, Fractional-frequency generators utilizing regenerative modulation. Proc. Inst. Radio Eng. 27(7), 446–457 (1939) R. Miller, Fractional-frequency generators utilizing regenerative modulation. Proc. Inst. Radio Eng. 27(7), 446–457 (1939)
54.
go back to reference A. Mirzaei, M. Heidari, A. Abidi, Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation, in IEEE Custom Integrated Circuits Conference 2006 (IEEE, Piscataway, 2006), pp. 737–740 A. Mirzaei, M. Heidari, A. Abidi, Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation, in IEEE Custom Integrated Circuits Conference 2006 (IEEE, Piscataway, 2006), pp. 737–740
55.
go back to reference A. Mirzaei, M. Heidari, R. Bagheri, A. Abidi, Multi-phase injection widens lock range of ring-oscillator-based frequency dividers. IEEE J. Solid State Circuits 43(3), 656–671 (2008)CrossRef A. Mirzaei, M. Heidari, R. Bagheri, A. Abidi, Multi-phase injection widens lock range of ring-oscillator-based frequency dividers. IEEE J. Solid State Circuits 43(3), 656–671 (2008)CrossRef
56.
go back to reference A. Mirzaei, M. Heidari, R. Bagheri, S. Chehrazi, A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. IEEE J. Solid State Circuits 42(9), 1916–1932 (2007)CrossRef A. Mirzaei, M. Heidari, R. Bagheri, S. Chehrazi, A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. IEEE J. Solid State Circuits 42(9), 1916–1932 (2007)CrossRef
57.
go back to reference H. Moyer, A. Daryoush, A unified analytical model and experimental validations of injection-locked processes. IEEE Trans. Microwave Theory Tech. 48(4), 493–499 (2000)CrossRef H. Moyer, A. Daryoush, A unified analytical model and experimental validations of injection-locked processes. IEEE Trans. Microwave Theory Tech. 48(4), 493–499 (2000)CrossRef
58.
go back to reference A. Musa, K. Okada, A. Matsuzawa, Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers. IEEE Trans. Microwave Theory Tech. 61(3), 1161–1173 (2013)CrossRef A. Musa, K. Okada, A. Matsuzawa, Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers. IEEE Trans. Microwave Theory Tech. 61(3), 1161–1173 (2013)CrossRef
59.
go back to reference H. Ng, R. Farjad-Rad, M. Lee, W. Dally, T. Greer, J. Poulton, J. Edmondson, R. Rathi, R. Senthinathan, A second-order semidigital clock recovery circuit based on injection locking. IEEE J. Solid State Circuits 38(12), 2101–2110 (2003)CrossRef H. Ng, R. Farjad-Rad, M. Lee, W. Dally, T. Greer, J. Poulton, J. Edmondson, R. Rathi, R. Senthinathan, A second-order semidigital clock recovery circuit based on injection locking. IEEE J. Solid State Circuits 38(12), 2101–2110 (2003)CrossRef
60.
go back to reference F. O’Mahony, S. Shekhar, M. Mansuri, G. Balamurugan, J. Jaussi, J. Kennedy, B. Casper, D. J. Allstot, R. Mooney, A 27 Gb/s forwarded-clock I/O receiver using an injection-locked LC-DCO in 45 nm CMOS, in 2008 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2008), pp. 452–627 F. O’Mahony, S. Shekhar, M. Mansuri, G. Balamurugan, J. Jaussi, J. Kennedy, B. Casper, D. J. Allstot, R. Mooney, A 27 Gb/s forwarded-clock I/O receiver using an injection-locked LC-DCO in 45 nm CMOS, in 2008 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, Piscataway, 2008), pp. 452–627
61.
go back to reference L. Paciorek, Injection locking of oscillators. Proc. IEEE 53(11), 1723–1727 (1965)CrossRef L. Paciorek, Injection locking of oscillators. Proc. IEEE 53(11), 1723–1727 (1965)CrossRef
62.
go back to reference F. Plessas, F. Gioulekas, G. Kalivas, Phase noise performance of fully differential sub-harmonic injection-locked PLL. Electron. Lett. 46(19), 1319–1321 (2010)CrossRef F. Plessas, F. Gioulekas, G. Kalivas, Phase noise performance of fully differential sub-harmonic injection-locked PLL. Electron. Lett. 46(19), 1319–1321 (2010)CrossRef
63.
go back to reference H. Rategh, T. Lee, Superharmonic injection-locked frequency dividers. IEEE J. Solid State Circuits 34(6), 813–821 (1999)CrossRef H. Rategh, T. Lee, Superharmonic injection-locked frequency dividers. IEEE J. Solid State Circuits 34(6), 813–821 (1999)CrossRef
68.
go back to reference I. Schmideg, Harmonic synchronization of nonlinear oscillators. Proc. IEEE 59(8), 1250–1251 (1971)CrossRef I. Schmideg, Harmonic synchronization of nonlinear oscillators. Proc. IEEE 59(8), 1250–1251 (1971)CrossRef
70.
go back to reference S. Shekhar, M. Mansuri, F. O’Mahony, G. Balamurugan, J. E. Jaussi, J. Kennedy, D. Allstot, R. Mooney, B. Casper, Strong injection locking in low-Q LC oscillators: modeling and application in a forwarded-clock I/O receiver. IEEE Trans. Circuits Syst. I 56(8), 1818–1829 (2009)MathSciNetCrossRef S. Shekhar, M. Mansuri, F. O’Mahony, G. Balamurugan, J. E. Jaussi, J. Kennedy, D. Allstot, R. Mooney, B. Casper, Strong injection locking in low-Q LC oscillators: modeling and application in a forwarded-clock I/O receiver. IEEE Trans. Circuits Syst. I 56(8), 1818–1829 (2009)MathSciNetCrossRef
72.
go back to reference D. Shin, S. Park, S. Raman, K. Koh, A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (IEEE, Piscataway, 2017), pp . 100–103 D. Shin, S. Park, S. Raman, K. Koh, A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (IEEE, Piscataway, 2017), pp . 100–103
73.
go back to reference N. Soltani, F. Yuan, Non-harmonic injection-locked phase-locked loops with applications in remote frequency calibration of passive wireless transponders. IEEE Trans. Circuits Syst. I 57(12), 2381–2393 (2010)MathSciNetCrossRef N. Soltani, F. Yuan, Non-harmonic injection-locked phase-locked loops with applications in remote frequency calibration of passive wireless transponders. IEEE Trans. Circuits Syst. I 57(12), 2381–2393 (2010)MathSciNetCrossRef
74.
go back to reference M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider. IEEE J. Solid State Circuits 39(7), 1170–1174 (2004)CrossRef M. Tiebout, A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider. IEEE J. Solid State Circuits 39(7), 1170–1174 (2004)CrossRef
75.
go back to reference A. Tofangdarzade, A. Jalali, An efficient method to analyze lock range in ring oscillators with multiple injections. IEEE Trans. Circuits Syst. II 62(11), 1013–1017 (2015)CrossRef A. Tofangdarzade, A. Jalali, An efficient method to analyze lock range in ring oscillators with multiple injections. IEEE Trans. Circuits Syst. II 62(11), 1013–1017 (2015)CrossRef
76.
go back to reference A. Tofangdarzade, A. Tofangdarzade, N. Saniei, Strong injection locking and pulling in LC multiphase oscillators with multiple injection signals. IEEE Trans. Circuits Syst. II (2018, accepted) A. Tofangdarzade, A. Tofangdarzade, N. Saniei, Strong injection locking and pulling in LC multiphase oscillators with multiple injection signals. IEEE Trans. Circuits Syst. II (2018, accepted)
79.
go back to reference D. Tucker, Forced oscillations in oscillator circuits, and the synchronization of oscillators. J. Inst. Radio Eng. Part III: Radio Commun. Eng. 92(19), 226–234 (1945) D. Tucker, Forced oscillations in oscillator circuits, and the synchronization of oscillators. J. Inst. Radio Eng. Part III: Radio Commun. Eng. 92(19), 226–234 (1945)
80.
go back to reference D. Tucker, Forced oscillations in oscillator circuits, and the synchronization of oscillators. J. Inst. Radio Eng. Part I: Gen. 93(61), 57–58 (1946) D. Tucker, Forced oscillations in oscillator circuits, and the synchronization of oscillators. J. Inst. Radio Eng. Part I: Gen. 93(61), 57–58 (1946)
81.
go back to reference B. van der Pol, The nonlinear theory of electric oscillations. Proc. Inst. Radio Eng. 22(9), 1051–1086 (1934)MATH B. van der Pol, The nonlinear theory of electric oscillations. Proc. Inst. Radio Eng. 22(9), 1051–1086 (1934)MATH
83.
go back to reference S. Verma, H. Rategh, T. Lee, A unified model for injection-locked frequency divider. IEEE J. Solid State Circuits 38(6), 1015–1027 (2003)CrossRef S. Verma, H. Rategh, T. Lee, A unified model for injection-locked frequency divider. IEEE J. Solid State Circuits 38(6), 1015–1027 (2003)CrossRef
84.
go back to reference J. Vincent, On some experiments in which two neighbouring maintained oscillatory circuits affect a resonating circuit. Proc. Phys. Soc. Lond. 32, 84–91 (1919)CrossRef J. Vincent, On some experiments in which two neighbouring maintained oscillatory circuits affect a resonating circuit. Proc. Phys. Soc. Lond. 32, 84–91 (1919)CrossRef
90.
go back to reference C. Wei, T. Kuan, S. Liu, A subharmonically injection-locked PLL with calibrated injection pulsewidth. IEEE Trans. Circuits Syst. II 62(6), 548–552 (2015)CrossRef C. Wei, T. Kuan, S. Liu, A subharmonically injection-locked PLL with calibrated injection pulsewidth. IEEE Trans. Circuits Syst. II 62(6), 548–552 (2015)CrossRef
94.
go back to reference K. Yamamoto, M. Fujishima, 55 GHz CMOS frequency divider with 3.2 GHz locking range, in Proceedings of the 30th European Solid-State Circuits Conference (IEEE, Piscataway, 2004), pp. 135–138 K. Yamamoto, M. Fujishima, 55 GHz CMOS frequency divider with 3.2 GHz locking range, in Proceedings of the 30th European Solid-State Circuits Conference (IEEE, Piscataway, 2004), pp. 135–138
98.
go back to reference X. Yi, C. Boon, M. Do, K. Yeo, W. Lim, Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs. IEEE Microwave Wireless Compon. Lett. 21(10), 559–561 (2011)CrossRef X. Yi, C. Boon, M. Do, K. Yeo, W. Lim, Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs. IEEE Microwave Wireless Compon. Lett. 21(10), 559–561 (2011)CrossRef
99.
go back to reference X. Yu, H. Cheema, R. Mahmoudi, A. van Roermund, X. Yan, A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement. IEEE Microwave Wireless Compon. Lett. 19(9), 575–577 (2009) X. Yu, H. Cheema, R. Mahmoudi, A. van Roermund, X. Yan, A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement. IEEE Microwave Wireless Compon. Lett. 19(9), 575–577 (2009)
105.
go back to reference F. Yuan, Y. Zhou, A phasor-domain study of lock range of harmonic oscillators with multiple injections. IEEE Trans. Circuits Syst. II 59(8), 466–470 (2012)CrossRef F. Yuan, Y. Zhou, A phasor-domain study of lock range of harmonic oscillators with multiple injections. IEEE Trans. Circuits Syst. II 59(8), 466–470 (2012)CrossRef
106.
go back to reference F. Yuan, Y. Zhou, Frequency-domain study of lock range of non-harmonic oscillators with multiple multi-tone injections. IEEE Trans. Circuits Syst. I 60(6), 1395–1406 (2013)MathSciNetCrossRef F. Yuan, Y. Zhou, Frequency-domain study of lock range of non-harmonic oscillators with multiple multi-tone injections. IEEE Trans. Circuits Syst. I 60(6), 1395–1406 (2013)MathSciNetCrossRef
107.
go back to reference F. Yuan, Y. Zhou, Injection signaling in relaxation oscillators. Analog Integr. Circ. Sig. Process 2019, 1–6 (2019) F. Yuan, Y. Zhou, Injection signaling in relaxation oscillators. Analog Integr. Circ. Sig. Process 2019, 1–6 (2019)
108.
go back to reference L. Zhang, B. Ciftcioglu, M. Huang, H. Wu, Injection-locked clocking: a new GHz clock distribution scheme, in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2006), pp. 785–788 L. Zhang, B. Ciftcioglu, M. Huang, H. Wu, Injection-locked clocking: a new GHz clock distribution scheme, in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, Piscataway, 2006), pp. 785–788
109.
go back to reference Z. Zhang, L. Liu, N. Wu, A novel 2.4-to-3.6 GHz wideband subharmonically injection-locked PLL with adaptively-aligned injection timing, in Proceedings of the IEEE Asian Solid-State Circuits Conference (IEEE, Piscataway, 2014), pp. 369–372 Z. Zhang, L. Liu, N. Wu, A novel 2.4-to-3.6 GHz wideband subharmonically injection-locked PLL with adaptively-aligned injection timing, in Proceedings of the IEEE Asian Solid-State Circuits Conference (IEEE, Piscataway, 2014), pp. 369–372
110.
go back to reference X. Zhang, X. Zhou, A. Daryoush, A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators. IEEE Trans. Microwave Theory Tech. 40(5), 895–902 (1992)CrossRef X. Zhang, X. Zhou, A. Daryoush, A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators. IEEE Trans. Microwave Theory Tech. 40(5), 895–902 (1992)CrossRef
112.
go back to reference Y. Zhou, F. Yuan. A study of lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach. IEEE Trans. Circuits Syst. II 58(10), 627–631 (2011)CrossRef Y. Zhou, F. Yuan. A study of lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach. IEEE Trans. Circuits Syst. II 58(10), 627–631 (2011)CrossRef
113.
go back to reference Y. Zhou, F. Yuan, Study of injection-locked non-harmonic oscillators using volterra series. IET Circuits Devices and Syst. 9(2), 119–130 (2015)CrossRef Y. Zhou, F. Yuan, Study of injection-locked non-harmonic oscillators using volterra series. IET Circuits Devices and Syst. 9(2), 119–130 (2015)CrossRef
Metadata
Title
Injection-Locking of Oscillators: An Overview
Author
Fei Yuan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-17364-7_1