Skip to main content
Top
Published in:

01-04-2023

Inner Automorphisms of Presheaves of Groups

Author: Jason Parker

Published in: Applied Categorical Structures | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It has been proven by Schupp and Bergman that the inner automorphisms of groups can be characterized purely categorically as those group automorphisms that can be coherently extended along any outgoing homomorphism. One is thus motivated to define a notion of (categorical) inner automorphism in an arbitrary category, as an automorphism that can be coherently extended along any outgoing morphism, and the theory of such automorphisms forms part of the theory of covariant isotropy. In this paper, we prove that the categorical inner automorphisms in any category \(\textsf{Group}^\mathcal {J}\) of presheaves of groups can be characterized in terms of conjugation-theoretic inner automorphisms of the component groups, together with a natural automorphism of the identity functor on the index category \(\mathcal {J}\). In fact, we deduce such a characterization from a much more general result characterizing the categorical inner automorphisms in any category \(\mathbb {T}\textsf{mod}^\mathcal {J}\) of presheaves of \(\mathbb {T}\)-models for a suitable first-order theory \(\mathbb {T}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Earlier versions of this result were also proven by Pettet [8] and Schupp [9].
 
2
The general theory of categorical isotropy was introduced in [2].
 
3
Quasi-equational theories are an equivalent formulation of multi-sorted essentially algebraic theories.
 
4
In fact, we will need to eventually impose some modest conditions on \(\mathbb {T}\); see Definitions 3.40 and 3.41.
 
Literature
1.
go back to reference Bergman, G.: An inner automorphism is only an inner automorphism, but an inner endomorphism can be something strange. Publicacions Matematiques 56, 91–126 (2012)MathSciNetCrossRefMATH Bergman, G.: An inner automorphism is only an inner automorphism, but an inner endomorphism can be something strange. Publicacions Matematiques 56, 91–126 (2012)MathSciNetCrossRefMATH
2.
go back to reference Funk, J., Hofstra, P., Steinberg, B.: Isotropy and crossed toposes. Theor. Appl. Cat. 26, 660–709 (2012)MathSciNetMATH Funk, J., Hofstra, P., Steinberg, B.: Isotropy and crossed toposes. Theor. Appl. Cat. 26, 660–709 (2012)MathSciNetMATH
3.
4.
go back to reference Hofstra, P., Parker, J., Scott, P.J.: Polymorphic automorphisms and the Picard group. In: Koyayashi, N. (Ed.) 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021), vol. 195. Dagstuhl Publications LIPlcs (2021) Hofstra, P., Parker, J., Scott, P.J.: Polymorphic automorphisms and the Picard group. In: Koyayashi, N. (Ed.) 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021), vol. 195. Dagstuhl Publications LIPlcs (2021)
Metadata
Title
Inner Automorphisms of Presheaves of Groups
Author
Jason Parker
Publication date
01-04-2023
Publisher
Springer Netherlands
Published in
Applied Categorical Structures / Issue 2/2023
Print ISSN: 0927-2852
Electronic ISSN: 1572-9095
DOI
https://doi.org/10.1007/s10485-023-09720-5

Other articles of this Issue 2/2023

Applied Categorical Structures 2/2023 Go to the issue

Premium Partner