Skip to main content
Top

2024 | OriginalPaper | Chapter

6. Innovations in Textile Technology Against Pathogenic Threats: A Review of the Recent Literature

Authors : Camille Venne, Nhu-Nang Vu, Safa Ladhari, Phuong Nguyen-Tri

Published in: Materials for Sustainable Environmental, Energy, and Bioresource Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current work offers an insightful literature review on the intersection of pathogenic agents and textile technology. It begins by classifying and discussing the characteristics of pathogens, such as bacteria and viruses, alongside their transmission methods and risks. The review progresses to explore the strategies for mitigating these risks, focusing on the adhesion of pathogens to surfaces and innovative solutions like Reactive Oxygen Species (ROS) generation and surface modifications. A significant emphasis is placed on the advancements in textile technology, including the exploration of antimicrobial agents like metallic NPs and natural products, as well as the development of self-cleaning textiles through techniques like the sol–gel process. This chapter encapsulates the critical role of textile innovation in addressing pathogenic challenges, highlighting the importance of ongoing research and development in this dynamic field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Robert, H., & Derham, W. (2014). Philosophical experiments and observations. In Cass library of science classics. Routledge. Robert, H., & Derham, W. (2014). Philosophical experiments and observations. In Cass library of science classics. Routledge.
2.
go back to reference Backer, J., & Robertson, L., & van Leeuwenhoek, A. (2016). Master of the minuscule. Brill. Backer, J., & Robertson, L., & van Leeuwenhoek, A. (2016). Master of the minuscule. Brill.
3.
go back to reference Théodoridès, J. (1966). Casimir Davaine (1812–1882): A precursor of Pasteur. Medical history, 10(2), 155–165.CrossRef Théodoridès, J. (1966). Casimir Davaine (1812–1882): A precursor of Pasteur. Medical history, 10(2), 155–165.CrossRef
4.
go back to reference Marie-Hélène Marchand, A. (2018). The story of the Pasteur institute and its contributions to global health. Cambridge Scholars Publishing. Marie-Hélène Marchand, A. (2018). The story of the Pasteur institute and its contributions to global health. Cambridge Scholars Publishing.
5.
go back to reference Chen, I., Christie, P. J., & Dubnau, D. (2005). The ins and outs of DNA transfer in bacteria. Science, 310(5753), 1456–1460.CrossRef Chen, I., Christie, P. J., & Dubnau, D. (2005). The ins and outs of DNA transfer in bacteria. Science, 310(5753), 1456–1460.CrossRef
6.
go back to reference Coico, R. (2006). Gram staining. Current Protocols in Microbiology, 00(1), A.3C.1–A.3C.2. Coico, R. (2006). Gram staining. Current Protocols in Microbiology, 00(1), A.3C.1–A.3C.2.
7.
go back to reference Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40(1), 133–159.CrossRef Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiology Reviews, 40(1), 133–159.CrossRef
8.
9.
go back to reference Shockman, G. D., & Barren, J. F. (1983). Structure, function, and assembly of cell walls of gram-positive bacteria. Annual Review of Microbiology, 37(1), 501–527.CrossRef Shockman, G. D., & Barren, J. F. (1983). Structure, function, and assembly of cell walls of gram-positive bacteria. Annual Review of Microbiology, 37(1), 501–527.CrossRef
10.
go back to reference Murínová, S., & Dercová, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. International Journal of Microbiology, 2014, 873081.CrossRef Murínová, S., & Dercová, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. International Journal of Microbiology, 2014, 873081.CrossRef
11.
go back to reference Sanjuán, R., et al. (2010). Viral mutation rates. Journal of Virology, 84(19), 9733–9748.CrossRef Sanjuán, R., et al. (2010). Viral mutation rates. Journal of Virology, 84(19), 9733–9748.CrossRef
12.
go back to reference Kurath, G., & Wargo, A. R. (2016). Evolution of viral virulence: Empirical studies. Kurath, G., & Wargo, A. R. (2016). Evolution of viral virulence: Empirical studies.
14.
go back to reference Fenner, F., Bachmann, P. A., Gibbs, E. P. J., Murphy, F. A., Studdert, M. J., & White, D. O. (1987). Structure and composition of viruses. Veterinary Virology, 3. Fenner, F., Bachmann, P. A., Gibbs, E. P. J., Murphy, F. A., Studdert, M. J., & White, D. O. (1987). Structure and composition of viruses. Veterinary Virology, 3.
15.
go back to reference Doms, R. W. (2016). Chapter 3—Basic concepts: A step-by-step guide to viral infection. In M. G. Katze, et al. (Ed.), Viral pathogenesis (3rd ed., pp. 29–40). Academic Press. Doms, R. W. (2016). Chapter 3—Basic concepts: A step-by-step guide to viral infection. In M. G. Katze, et al. (Ed.), Viral pathogenesis (3rd ed., pp. 29–40). Academic Press.
16.
go back to reference Dimitrov, D. S. (2004). Virus entry: Molecular mechanisms and biomedical applications. Nature Reviews Microbiology, 2(2), 109–122.CrossRef Dimitrov, D. S. (2004). Virus entry: Molecular mechanisms and biomedical applications. Nature Reviews Microbiology, 2(2), 109–122.CrossRef
17.
go back to reference Ta, L., Gosa, L., & Nathanson, D. A. (2019). Biosafety and biohazards: Understanding biosafety levels and meeting safety requirements of a biobank. In W. H. Yong (Ed.), Biobanking: Methods and protocols (pp. 213–225). Springer Ta, L., Gosa, L., & Nathanson, D. A. (2019). Biosafety and biohazards: Understanding biosafety levels and meeting safety requirements of a biobank. In W. H. Yong (Ed.), Biobanking: Methods and protocols (pp. 213–225). Springer
18.
go back to reference Chalker, R. B., & Blaser, M. J. (1988). A review of human salmonellosis: III. Magnitude of Salmonella infection in the United States. Clinical Infectious Diseases, 10(1), 111–124. Chalker, R. B., & Blaser, M. J. (1988). A review of human salmonellosis: III. Magnitude of Salmonella infection in the United States. Clinical Infectious Diseases, 10(1), 111–124.
19.
go back to reference Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Quantitative microbial risk assessment. Wiley. Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Quantitative microbial risk assessment. Wiley.
20.
go back to reference Dada, A. C., & Gyawali, P. (2021). Quantitative microbial risk assessment (QMRA) of occupational exposure to SARS-CoV-2 in wastewater treatment plants. The Science of the Total Environment, 763, 142989–142989.CrossRef Dada, A. C., & Gyawali, P. (2021). Quantitative microbial risk assessment (QMRA) of occupational exposure to SARS-CoV-2 in wastewater treatment plants. The Science of the Total Environment, 763, 142989–142989.CrossRef
21.
go back to reference Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Conducting the hazard identification (HAZ ID). In Quantitative microbial risk assessment (pp. 91–127). Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Conducting the hazard identification (HAZ ID). In Quantitative microbial risk assessment (pp. 91–127).
22.
go back to reference Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Analytical methods and the QMRA framework. In Quantitative microbial risk assessment (pp. 129–157). Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Analytical methods and the QMRA framework. In Quantitative microbial risk assessment (pp. 129–157).
23.
go back to reference Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Conducting the dose–response assessment. In Quantitative microbial risk assessment (pp. 267–321). Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Conducting the dose–response assessment. In Quantitative microbial risk assessment (pp. 267–321).
24.
go back to reference Edwards, D. A., et al. (2021). Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences USA, 118(8). Edwards, D. A., et al. (2021). Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences USA, 118(8).
25.
go back to reference Godijk, N. G., Bootsma, M. C. J., & Bonten, M. J. M. (2022). Transmission routes of antibiotic resistant bacteria: A systematic review. BMC Infectious Diseases, 22(1), 482.CrossRef Godijk, N. G., Bootsma, M. C. J., & Bonten, M. J. M. (2022). Transmission routes of antibiotic resistant bacteria: A systematic review. BMC Infectious Diseases, 22(1), 482.CrossRef
26.
go back to reference Stilianakis, N. I., & Drossinos, Y. (2010). Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society, Interface, 7(50), 1355–1366.CrossRef Stilianakis, N. I., & Drossinos, Y. (2010). Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society, Interface, 7(50), 1355–1366.CrossRef
27.
go back to reference Schmidt, T. S., et al. (2019). Extensive transmission of microbes along the gastrointestinal tract. eLife, 8. Schmidt, T. S., et al. (2019). Extensive transmission of microbes along the gastrointestinal tract. eLife, 8.
28.
go back to reference Guo, Z.-D., et al. (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7), 1583–1591.CrossRef Guo, Z.-D., et al. (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7), 1583–1591.CrossRef
29.
go back to reference Pitkin, A., Deen, J., & Dee, S. (2009). Further assessment of fomites and personnel as vehicles for the mechanical transport and transmission of porcine reproductive and respiratory syndrome virus. Canadian Journal of Veterinary Research, 73(4), 298–302. Pitkin, A., Deen, J., & Dee, S. (2009). Further assessment of fomites and personnel as vehicles for the mechanical transport and transmission of porcine reproductive and respiratory syndrome virus. Canadian Journal of Veterinary Research, 73(4), 298–302.
30.
go back to reference Kramer, A., & Assadian, O. (2014). Survival of microorganisms on inanimate surfaces. In Use of biocidal surfaces for reduction of healthcare acquired infections (pp. 7–26). Kramer, A., & Assadian, O. (2014). Survival of microorganisms on inanimate surfaces. In Use of biocidal surfaces for reduction of healthcare acquired infections (pp. 7–26).
31.
go back to reference Aydogdu, M. O., et al. (2021). Surface interactions and viability of coronaviruses. Journal of the Royal Society Interface, 18(174), 20200798.CrossRef Aydogdu, M. O., et al. (2021). Surface interactions and viability of coronaviruses. Journal of the Royal Society Interface, 18(174), 20200798.CrossRef
32.
go back to reference Sivakumar, P. M., et al. (2010). Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone. Carbohydrate Polymers, 79(3), 717–723.CrossRef Sivakumar, P. M., et al. (2010). Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone. Carbohydrate Polymers, 79(3), 717–723.CrossRef
33.
go back to reference Ikawa, J. Y., & Rossen, J. S. (1999). Reducing bacteria in household sponges. Journal of Environmental Health, 62(1). Ikawa, J. Y., & Rossen, J. S. (1999). Reducing bacteria in household sponges. Journal of Environmental Health, 62(1).
34.
go back to reference Morra, M., & Cassinelli, C. (1998). Bacterial adhesion to polymer surfaces: A critical review of surface thermodynamic approaches. Journal of Biomaterials Science, Polymer Edition, 9(1), 55–74.CrossRef Morra, M., & Cassinelli, C. (1998). Bacterial adhesion to polymer surfaces: A critical review of surface thermodynamic approaches. Journal of Biomaterials Science, Polymer Edition, 9(1), 55–74.CrossRef
35.
go back to reference Van Loosdrecht, M. C. M., Norde, W., & Zehnder, A. J. B. (1990). Physical chemical description of bacterial adhesion. Journal of Biomaterials Applications, 5(2), 91–106.CrossRef Van Loosdrecht, M. C. M., Norde, W., & Zehnder, A. J. B. (1990). Physical chemical description of bacterial adhesion. Journal of Biomaterials Applications, 5(2), 91–106.CrossRef
36.
go back to reference Desrousseaux, C., et al. (2013). Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. The Journal of Hospital Infection, 85(2), 87–93.CrossRef Desrousseaux, C., et al. (2013). Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. The Journal of Hospital Infection, 85(2), 87–93.CrossRef
37.
go back to reference Hemmatian, T., Lee, H., & Kim, J. (2021). Bacteria adhesion of textiles influenced by wettability and pore characteristics of fibrous substrates. Polymers (Basel), 13(2). Hemmatian, T., Lee, H., & Kim, J. (2021). Bacteria adhesion of textiles influenced by wettability and pore characteristics of fibrous substrates. Polymers (Basel), 13(2).
38.
go back to reference Park, S.-J., & Seo, M.-K. (2011). Chapter 2—Solid-gas interaction. In S.-J. Park, & M.-K. Seo (Eds.), Interface science and technology (pp. 59–145). Elsevier. Park, S.-J., & Seo, M.-K. (2011). Chapter 2—Solid-gas interaction. In S.-J. Park, & M.-K. Seo (Eds.), Interface science and technology (pp. 59–145). Elsevier.
39.
go back to reference Tremblay, Y. D., Hathroubi, S., & Jacques, M. (2014). Bacterial biofilms: Their importance in animal health and public health. Canadian Journal of Veterinary Research, 78(2), 110–116. Tremblay, Y. D., Hathroubi, S., & Jacques, M. (2014). Bacterial biofilms: Their importance in animal health and public health. Canadian Journal of Veterinary Research, 78(2), 110–116.
40.
go back to reference Tuladhar, E., et al. (2012). Residual viral and bacterial contamination of surfaces after cleaning and disinfection. Applied and Environmental Microbiology, 78(21), 7769–7775.CrossRef Tuladhar, E., et al. (2012). Residual viral and bacterial contamination of surfaces after cleaning and disinfection. Applied and Environmental Microbiology, 78(21), 7769–7775.CrossRef
41.
go back to reference Lai, M. Y. Y., Cheng, P. K. C., & Lim, W. W. L. (2005). Survival of severe acute respiratory syndrome coronavirus. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 41(7), e67–e71.CrossRef Lai, M. Y. Y., Cheng, P. K. C., & Lim, W. W. L. (2005). Survival of severe acute respiratory syndrome coronavirus. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 41(7), e67–e71.CrossRef
42.
go back to reference Imani, S. M., et al. (2020). Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 14(10), 12341–12369.CrossRef Imani, S. M., et al. (2020). Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano, 14(10), 12341–12369.CrossRef
43.
go back to reference Grabowicz, M. (2019). Lipoproteins and their trafficking to the outer membrane. EcoSal Plus, 8(2). Grabowicz, M. (2019). Lipoproteins and their trafficking to the outer membrane. EcoSal Plus, 8(2).
44.
go back to reference Bassegoda, A., et al. (2018). Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Applied Microbiology and Biotechnology, 102(5), 2075–2089.CrossRef Bassegoda, A., et al. (2018). Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Applied Microbiology and Biotechnology, 102(5), 2075–2089.CrossRef
45.
go back to reference Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.CrossRef Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.CrossRef
46.
go back to reference Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182.
47.
go back to reference Feng, Q. L., et al. (2000). A mechanistic study of the antibacterial effect of Silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.CrossRef Feng, Q. L., et al. (2000). A mechanistic study of the antibacterial effect of Silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.CrossRef
48.
go back to reference Lara, H. H., et al. (2010). Bactericidal effect of Ag nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.CrossRef Lara, H. H., et al. (2010). Bactericidal effect of Ag nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.CrossRef
49.
go back to reference Elechiguerra, J. L., et al. (2005). Interaction of Ag nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 6.CrossRef Elechiguerra, J. L., et al. (2005). Interaction of Ag nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 6.CrossRef
50.
go back to reference Kumar, A., et al. (2021). Antimicrobial Ag nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction. Colloid and Interface Science Communications, 45, 100542.CrossRef Kumar, A., et al. (2021). Antimicrobial Ag nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction. Colloid and Interface Science Communications, 45, 100542.CrossRef
51.
go back to reference Auten, R. L., & Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatric Research, 66(2), 121–127.CrossRef Auten, R. L., & Davis, J. M. (2009). Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatric Research, 66(2), 121–127.CrossRef
52.
go back to reference Covarrubias, L., et al. (2008). Function of reactive oxygen species during animal development: Passive or active? Developmental Biology, 320(1), 1–11.CrossRef Covarrubias, L., et al. (2008). Function of reactive oxygen species during animal development: Passive or active? Developmental Biology, 320(1), 1–11.CrossRef
53.
go back to reference Kaushik, N., et al. (2023). The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. Journal of Advanced Research, 43, 59–71.CrossRef Kaushik, N., et al. (2023). The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. Journal of Advanced Research, 43, 59–71.CrossRef
54.
go back to reference Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology & Medicine, 45(8), 1167–1177.CrossRef Rowe, L. A., Degtyareva, N., & Doetsch, P. W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology & Medicine, 45(8), 1167–1177.CrossRef
55.
go back to reference Beyth, N., et al. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, 246012.CrossRef Beyth, N., et al. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, 246012.CrossRef
56.
go back to reference Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanoSilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.CrossRef Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanoSilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42(12), 4583–4588.CrossRef
57.
go back to reference Raeisi, M., et al. (2021). Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties. International Journal of Biological Macromolecules, 171, 158–165.CrossRef Raeisi, M., et al. (2021). Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties. International Journal of Biological Macromolecules, 171, 158–165.CrossRef
58.
go back to reference Ubuo, E., et al. (2021). The direct cause of amplified wettability: Roughness or surface chemistry? Journal of Composites Science, 5, 213.CrossRef Ubuo, E., et al. (2021). The direct cause of amplified wettability: Roughness or surface chemistry? Journal of Composites Science, 5, 213.CrossRef
59.
go back to reference Senez, V., Thomy, V., & Dufour, R. (2014). Wetting on heterogeneous surfaces, in nanotechnologies for synthetic super non‐wetting surfaces (pp. 13–26). Senez, V., Thomy, V., & Dufour, R. (2014). Wetting on heterogeneous surfaces, in nanotechnologies for synthetic super non‐wetting surfaces (pp. 13–26).
60.
go back to reference Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.CrossRef Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551.CrossRef
61.
go back to reference Chiereghin, A., et al. (2020). Microbial contamination of medical staff clothing during patient care activities: Performance of decontamination of domestic versus industrial laundering procedures. Current Microbiology, 77(7), 1159–1166.CrossRef Chiereghin, A., et al. (2020). Microbial contamination of medical staff clothing during patient care activities: Performance of decontamination of domestic versus industrial laundering procedures. Current Microbiology, 77(7), 1159–1166.CrossRef
62.
go back to reference Kozłowski, R. M. (2012). Handbook of natural fibres. Woodhead Publishing. Kozłowski, R. M. (2012). Handbook of natural fibres. Woodhead Publishing.
63.
go back to reference Awais, M., et al. (2015). Inclusion of recycled PPTA fibre in development of cut-resistant gloves. The Journal of the Textile Institute, 106(4), 354–358.CrossRef Awais, M., et al. (2015). Inclusion of recycled PPTA fibre in development of cut-resistant gloves. The Journal of the Textile Institute, 106(4), 354–358.CrossRef
64.
go back to reference Norouzi, M., Zare, Y., & Kiany, P. (2015). NPs as effective flame retardants for natural and synthetic textile polymers: Application, mechanism, and optimization. Polymer Reviews, 55(3), 531–560.CrossRef Norouzi, M., Zare, Y., & Kiany, P. (2015). NPs as effective flame retardants for natural and synthetic textile polymers: Application, mechanism, and optimization. Polymer Reviews, 55(3), 531–560.CrossRef
65.
go back to reference Alebeid, O. K., & Zhao, T. (2016). Simultaneous dyeing and functional finishing of cotton fabric using reactive dyes doped with TiO2 nano-sol. The Journal of the Textile Institute, 107(5), 625–635.CrossRef Alebeid, O. K., & Zhao, T. (2016). Simultaneous dyeing and functional finishing of cotton fabric using reactive dyes doped with TiO2 nano-sol. The Journal of the Textile Institute, 107(5), 625–635.CrossRef
66.
go back to reference Kang, C. K., et al. (2016). Antibacterial cotton fibers treated with Ag NPs and quaternary ammonium salts. Carbohydrate Polymers, 151, 1012–1018.CrossRef Kang, C. K., et al. (2016). Antibacterial cotton fibers treated with Ag NPs and quaternary ammonium salts. Carbohydrate Polymers, 151, 1012–1018.CrossRef
67.
go back to reference Hu, L., et al. (2019). Light-induced production of reactive oxygen species by a novel water-soluble benzophenone derivative containing quaternary ammonium groups and its assembly on the protein fiber surface. ACS Applied Materials & Interfaces, 11(29), 26500–26506.CrossRef Hu, L., et al. (2019). Light-induced production of reactive oxygen species by a novel water-soluble benzophenone derivative containing quaternary ammonium groups and its assembly on the protein fiber surface. ACS Applied Materials & Interfaces, 11(29), 26500–26506.CrossRef
68.
go back to reference de Azevedo, A. R. G., et al. (2021). Natural fibers as an alternative to synthetic fibers in reinforcement of geopolymer matrices: A comparative review. Polymers, 13(15), 2493.CrossRef de Azevedo, A. R. G., et al. (2021). Natural fibers as an alternative to synthetic fibers in reinforcement of geopolymer matrices: A comparative review. Polymers, 13(15), 2493.CrossRef
69.
go back to reference Stone, C., et al. (2020). Natural or synthetic—How global trends in textile usage threaten freshwater environments. Science of the Total Environment, 718, 134689.CrossRef Stone, C., et al. (2020). Natural or synthetic—How global trends in textile usage threaten freshwater environments. Science of the Total Environment, 718, 134689.CrossRef
70.
go back to reference Miraftab, M. (2000). 2—Technical fibres. In A. R. Horrocks, & S. C. Anand (Eds.), Handbook of technical textiles (pp. 24–41). Woodhead Publishing. Miraftab, M. (2000). 2—Technical fibres. In A. R. Horrocks, & S. C. Anand (Eds.), Handbook of technical textiles (pp. 24–41). Woodhead Publishing.
71.
go back to reference Hutten, I. M. (2007). Chapter 1—Introduction to nonwoven filter media. In I. M. Hutten (Ed.), Handbook of nonwoven filter media (pp. 1–28). Butterworth-Heinemann. Hutten, I. M. (2007). Chapter 1—Introduction to nonwoven filter media. In I. M. Hutten (Ed.), Handbook of nonwoven filter media (pp. 1–28). Butterworth-Heinemann.
72.
go back to reference Hubbe, M. A., & Koukoulas, A. A. (2016). Wet-laid nonwovens manufacture-chemical approaches using synthetic and cellulosic fibers. BioResources, 11(2). Hubbe, M. A., & Koukoulas, A. A. (2016). Wet-laid nonwovens manufacture-chemical approaches using synthetic and cellulosic fibers. BioResources, 11(2).
73.
go back to reference Tokiwa, Y., et al. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742.CrossRef Tokiwa, Y., et al. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742.CrossRef
74.
go back to reference Sarkar, S., Diab, H., & Thompson, J. (2023). Microplastic pollution: Chemical characterization and impact on wildlife. International Journal of Environmental Research and Public Health, 20(3). Sarkar, S., Diab, H., & Thompson, J. (2023). Microplastic pollution: Chemical characterization and impact on wildlife. International Journal of Environmental Research and Public Health, 20(3).
75.
go back to reference Raghavendran, V., Asare, E., & Roy, I. (2020). Chapter three—Bacterial cellulose: Biosynthesis, production, and applications. In R. K. Poole (Ed.), Advances in microbial physiology (pp. 89–138). Academic Press. Raghavendran, V., Asare, E., & Roy, I. (2020). Chapter three—Bacterial cellulose: Biosynthesis, production, and applications. In R. K. Poole (Ed.), Advances in microbial physiology (pp. 89–138). Academic Press.
76.
go back to reference Wang, S., Lu, A., & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169–206.CrossRef Wang, S., Lu, A., & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169–206.CrossRef
77.
go back to reference Proto, M., Supino, S., & Malandrino, O. (2000). Cotton: A flow cycle to exploit. Industrial Crops and Products, 11, 173–178.CrossRef Proto, M., Supino, S., & Malandrino, O. (2000). Cotton: A flow cycle to exploit. Industrial Crops and Products, 11, 173–178.CrossRef
78.
go back to reference Vikman, M., et al. (2015). Biodegradability and compostability of nanofibrillar cellulose-based products. Journal of Polymers and the Environment, 23(2), 206–215.CrossRef Vikman, M., et al. (2015). Biodegradability and compostability of nanofibrillar cellulose-based products. Journal of Polymers and the Environment, 23(2), 206–215.CrossRef
79.
go back to reference Jin, C., et al. (2012). Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. Journal of Materials Chemistry, 22(25), 12562–12567.CrossRef Jin, C., et al. (2012). Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. Journal of Materials Chemistry, 22(25), 12562–12567.CrossRef
80.
go back to reference Miao, S., et al. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta biomaterialia, 10(4), 1692–1704.CrossRef Miao, S., et al. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta biomaterialia, 10(4), 1692–1704.CrossRef
81.
go back to reference Byrne, C. (2000) 1—Technical textiles market—An overview. In A. R. Horrocks, & S. C. Anand (Eds.), Handbook of technical textiles (pp. 1–23). Woodhead Publishing. Byrne, C. (2000) 1—Technical textiles market—An overview. In A. R. Horrocks, & S. C. Anand (Eds.), Handbook of technical textiles (pp. 1–23). Woodhead Publishing.
82.
go back to reference Iyigundogdu, Z. U., et al. (2017). Developing novel antimicrobial and antiviral textile products. Applied Biochemistry and Biotechnology, 181(3), 1155–1166.CrossRef Iyigundogdu, Z. U., et al. (2017). Developing novel antimicrobial and antiviral textile products. Applied Biochemistry and Biotechnology, 181(3), 1155–1166.CrossRef
83.
go back to reference Han, Y., et al. (2020). Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science & Engineering, 15(3), 38.CrossRef Han, Y., et al. (2020). Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science & Engineering, 15(3), 38.CrossRef
84.
go back to reference Flynn, K. (1999). Overview of public health and urban agriculture: water, soil and crop contamination and emerging urban zoonoses. Cities feeding people series; rept. 30. Flynn, K. (1999). Overview of public health and urban agriculture: water, soil and crop contamination and emerging urban zoonoses. Cities feeding people series; rept. 30.
85.
go back to reference do Nascimento, E. R., & Franco, R. M. (2014). Salmonella spp. detection in chicken meat and cross-contamination in an industrial kitchen. do Nascimento, E. R., & Franco, R. M. (2014). Salmonella spp. detection in chicken meat and cross-contamination in an industrial kitchen.
86.
go back to reference Ronco, C. (2015). Ebola virus disease and blood purification techniques. Blood Purification, 38(3–4), 273–275. Ronco, C. (2015). Ebola virus disease and blood purification techniques. Blood Purification, 38(3–4), 273–275.
87.
go back to reference Judah, G., et al. (2010). Dirty hands: Bacteria of faecal origin on commuters’ hands. Epidemiology & Infection, 138(3), 409–414.CrossRef Judah, G., et al. (2010). Dirty hands: Bacteria of faecal origin on commuters’ hands. Epidemiology & Infection, 138(3), 409–414.CrossRef
88.
go back to reference Tiwari, A., et al. (2006). Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Diseases, 50(2), 284–287.CrossRef Tiwari, A., et al. (2006). Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Diseases, 50(2), 284–287.CrossRef
89.
go back to reference Dyer, C., et al. (2019). Biocide resistance and transmission of clostridium difficile spores spiked onto clinical surfaces from an American health care facility. Applied and Environmental Microbiology, 85(17). Dyer, C., et al. (2019). Biocide resistance and transmission of clostridium difficile spores spiked onto clinical surfaces from an American health care facility. Applied and Environmental Microbiology, 85(17).
90.
go back to reference Snigdha, Hiloidhari, M., & Bandyopadhyay, S. (2023). Environmental footprints of disposable and reusable personal protective equipment—A product life cycle approach for body coveralls. Journal of Cleaner Production, 394, 136166. Snigdha, Hiloidhari, M., & Bandyopadhyay, S. (2023). Environmental footprints of disposable and reusable personal protective equipment—A product life cycle approach for body coveralls. Journal of Cleaner Production, 394, 136166.
91.
go back to reference McQuerry, M., Easter, E., & Cao, A. (2021). Disposable versus reusable medical gowns: A performance comparison. American Journal of Infection Control, 49(5), 563–570.CrossRef McQuerry, M., Easter, E., & Cao, A. (2021). Disposable versus reusable medical gowns: A performance comparison. American Journal of Infection Control, 49(5), 563–570.CrossRef
92.
go back to reference Blakemore, E. (2020). Why plague doctors wore those strange beaked masks. National Geographic, 12. Blakemore, E. (2020). Why plague doctors wore those strange beaked masks. National Geographic, 12.
93.
go back to reference Matuschek, C., et al. (2020). The history and value of face masks. European Journal of Medical Research, 25(1), 1–6.CrossRef Matuschek, C., et al. (2020). The history and value of face masks. European Journal of Medical Research, 25(1), 1–6.CrossRef
94.
go back to reference Lockwood, J. S., White, W. L., & Murphy, F. D. (1944). The use of penicillin in surgical infections. Annals of Surgery, 120(3), 311–344.CrossRef Lockwood, J. S., White, W. L., & Murphy, F. D. (1944). The use of penicillin in surgical infections. Annals of Surgery, 120(3), 311–344.CrossRef
95.
go back to reference Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2). Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2).
96.
go back to reference Sánchez-López, E., et al. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel), 10(2). Sánchez-López, E., et al. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel), 10(2).
97.
go back to reference Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.CrossRef Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.CrossRef
98.
go back to reference Hans, M., et al. (2016). Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases, 11(1), 018902.CrossRef Hans, M., et al. (2016). Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases, 11(1), 018902.CrossRef
99.
go back to reference Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of NPs: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.CrossRef Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of NPs: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.CrossRef
100.
go back to reference Melnikau, D., et al. (2013). Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Research Letters, 8(1), 134.CrossRef Melnikau, D., et al. (2013). Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Research Letters, 8(1), 134.CrossRef
101.
go back to reference Sun, J., et al. (2018). Effect of the types of stabilizers and size distribution on catalytic activity of palladium NPs in the carboxylative coupling reaction. SN Applied Sciences, 1(1), 137.CrossRef Sun, J., et al. (2018). Effect of the types of stabilizers and size distribution on catalytic activity of palladium NPs in the carboxylative coupling reaction. SN Applied Sciences, 1(1), 137.CrossRef
102.
go back to reference Rajput, N. (2015). Methods of preparation of NPs-a review. International Journal of Advances in Engineering & Technology, 7(6), 1806. Rajput, N. (2015). Methods of preparation of NPs-a review. International Journal of Advances in Engineering & Technology, 7(6), 1806.
103.
go back to reference Xiang, D.-X., et al. (2011). Inhibitory effects of Ag NPs on H1N1 influenza A virus in vitro. Journal of Virological Methods, 178(1), 137–142.CrossRef Xiang, D.-X., et al. (2011). Inhibitory effects of Ag NPs on H1N1 influenza A virus in vitro. Journal of Virological Methods, 178(1), 137–142.CrossRef
104.
go back to reference Mertens, B. S., et al. (2022). Efficacy and mechanisms of copper ion-catalyzed inactivation of human norovirus. ACS Infectious Diseases, 8(4), 855–864.CrossRef Mertens, B. S., et al. (2022). Efficacy and mechanisms of copper ion-catalyzed inactivation of human norovirus. ACS Infectious Diseases, 8(4), 855–864.CrossRef
105.
go back to reference Huang, Z., et al. (2008). Toxicological effect of ZnO NPs based on bacteria. Langmuir, 24(8), 4140–4144.CrossRef Huang, Z., et al. (2008). Toxicological effect of ZnO NPs based on bacteria. Langmuir, 24(8), 4140–4144.CrossRef
106.
go back to reference Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.CrossRef Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.CrossRef
107.
go back to reference Li, Y., et al. (2013). Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of Ag NPs under different irradiation conditions. Environmental Science & Technology, 47(18), 10293–10301. Li, Y., et al. (2013). Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of Ag NPs under different irradiation conditions. Environmental Science & Technology, 47(18), 10293–10301.
108.
go back to reference Fujimori, Y., et al. (2012). Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Applied and Environment Microbiology, 78(4), 951–955.CrossRef Fujimori, Y., et al. (2012). Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Applied and Environment Microbiology, 78(4), 951–955.CrossRef
109.
go back to reference Purniawan, A., et al. (2022). Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Scientific Reports, 12(1), 4835.CrossRef Purniawan, A., et al. (2022). Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Scientific Reports, 12(1), 4835.CrossRef
110.
go back to reference Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.CrossRef Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527–3532.CrossRef
111.
go back to reference Ghaffari, H., et al. (2019). Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. Journal of Biomedical Science, 26(1), 70.CrossRef Ghaffari, H., et al. (2019). Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. Journal of Biomedical Science, 26(1), 70.CrossRef
112.
go back to reference Jiao, Y., et al. (2017). Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Progress in Polymer Science, 71, 53–90.CrossRef Jiao, Y., et al. (2017). Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Progress in Polymer Science, 71, 53–90.CrossRef
113.
go back to reference Forman, M. E., et al. (2016). Structure-resistance relationships: Interrogating antiseptic resistance in bacteria with multicationic quaternary ammonium dyes. ChemMedChem, 11(9), 958–962.CrossRef Forman, M. E., et al. (2016). Structure-resistance relationships: Interrogating antiseptic resistance in bacteria with multicationic quaternary ammonium dyes. ChemMedChem, 11(9), 958–962.CrossRef
114.
go back to reference Tran, P. L., et al. (2015). A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation. Wound Repair and Regeneration, 23(1), 74–81 [Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society]. Tran, P. L., et al. (2015). A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation. Wound Repair and Regeneration, 23(1), 74–81 [Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society].
115.
go back to reference Haldar, J., et al. (2006). Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proceedings of the National Academy of Sciences, 103(47), 17667–17671.CrossRef Haldar, J., et al. (2006). Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proceedings of the National Academy of Sciences, 103(47), 17667–17671.CrossRef
116.
go back to reference Lobo, F. C. M., et al. (2021). An overview of the antimicrobial properties of lignocellulosic materials. Molecules, 26(6), 1749.CrossRef Lobo, F. C. M., et al. (2021). An overview of the antimicrobial properties of lignocellulosic materials. Molecules, 26(6), 1749.CrossRef
117.
go back to reference Nabavi, S. F., et al. (2015). Antibacterial effects of cinnamon: From farm to food cosmetic and pharmaceutical industries. Nutrients, 7(9), 7729–7748.CrossRef Nabavi, S. F., et al. (2015). Antibacterial effects of cinnamon: From farm to food cosmetic and pharmaceutical industries. Nutrients, 7(9), 7729–7748.CrossRef
118.
go back to reference Singh, B., & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5(2), 129–151. Singh, B., & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5(2), 129–151.
119.
go back to reference Devi, K. P., et al. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107–115.CrossRef Devi, K. P., et al. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107–115.CrossRef
120.
go back to reference Yoo, C.-B., et al. (2005). Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Letters, 225(1), 41–52.CrossRef Yoo, C.-B., et al. (2005). Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Letters, 225(1), 41–52.CrossRef
121.
go back to reference Hejda, F., Solar, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements—A comparison of various approaches. In WDS Hejda, F., Solar, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements—A comparison of various approaches. In WDS
122.
go back to reference Yang, J., et al. (2015). A personal desktop liquid-metal printer as a pervasive electronics manufacturing tool for society in the near future. Engineering, 1(4), 506–512.CrossRef Yang, J., et al. (2015). A personal desktop liquid-metal printer as a pervasive electronics manufacturing tool for society in the near future. Engineering, 1(4), 506–512.CrossRef
123.
go back to reference Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988–994.CrossRef Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988–994.CrossRef
124.
go back to reference Saubade, F., et al. (2021). Principal component analysis to determine the surface properties that influence the self-cleaning action of hydrophobic plant leaves. Langmuir, 37(27), 8177–8189.CrossRef Saubade, F., et al. (2021). Principal component analysis to determine the surface properties that influence the self-cleaning action of hydrophobic plant leaves. Langmuir, 37(27), 8177–8189.CrossRef
125.
go back to reference Nguyen-Tri, P., et al. (2019). Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega, 4(4), 7829–7837.CrossRef Nguyen-Tri, P., et al. (2019). Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega, 4(4), 7829–7837.CrossRef
126.
go back to reference Xu, L., et al. (2012). Superhydrophobic cotton fabrics prepared by one-step water-based sol–gel coating. The Journal of The Textile Institute, 103(3), 311–319. Xu, L., et al. (2012). Superhydrophobic cotton fabrics prepared by one-step water-based sol–gel coating. The Journal of The Textile Institute, 103(3), 311–319.
127.
go back to reference Daoud, W. A., Xin, J. H., & Tao, X. (2004). Superhydrophobic silica nanocomposite coating by a low-temperature process. Journal of the American Ceramic Society, 87(9), 1782–1784.CrossRef Daoud, W. A., Xin, J. H., & Tao, X. (2004). Superhydrophobic silica nanocomposite coating by a low-temperature process. Journal of the American Ceramic Society, 87(9), 1782–1784.CrossRef
128.
go back to reference Wegman, R. F., & Van Twisk, J. (2013). 1—Introduction. In R. F. Wegman, & J. Van Twisk (Eds.), Surface preparation techniques for adhesive bonding (2nd ed., pp. 1–8). William Andrew Publishing. Wegman, R. F., & Van Twisk, J. (2013). 1—Introduction. In R. F. Wegman, & J. Van Twisk (Eds.), Surface preparation techniques for adhesive bonding (2nd ed., pp. 1–8). William Andrew Publishing.
129.
go back to reference Eslami, E., Jafari, R., & Momen, G. (2021). A review of plasma-based superhydrophobic textiles: Theoretical definitions, fabrication, and recent developments. Journal of Coatings Technology and Research, 18(6), 1635–1658.CrossRef Eslami, E., Jafari, R., & Momen, G. (2021). A review of plasma-based superhydrophobic textiles: Theoretical definitions, fabrication, and recent developments. Journal of Coatings Technology and Research, 18(6), 1635–1658.CrossRef
130.
go back to reference Zhou, F., et al. (2021). Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609. Zhou, F., et al. (2021). Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609.
131.
go back to reference Fernández-Blázquez, J. P., et al. (2011). Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment. Journal of Colloid And Interface Science, 357(1), 234–238.CrossRef Fernández-Blázquez, J. P., et al. (2011). Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment. Journal of Colloid And Interface Science, 357(1), 234–238.CrossRef
132.
go back to reference Wu, L., et al. (2013). Mimic nature, beyond nature: Facile synthesis of durable superhydrophobic textiles using organosilanes. Journal of Materials Chemistry B, 1(37), 4756–4763.CrossRef Wu, L., et al. (2013). Mimic nature, beyond nature: Facile synthesis of durable superhydrophobic textiles using organosilanes. Journal of Materials Chemistry B, 1(37), 4756–4763.CrossRef
133.
go back to reference Xue, C.-H., Bai, X., & Jia, S.-T. (2016). Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Scientific Reports, 6(1), 27262.CrossRef Xue, C.-H., Bai, X., & Jia, S.-T. (2016). Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Scientific Reports, 6(1), 27262.CrossRef
134.
go back to reference Jin, Y., et al. (2015). Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability. Journal of Hazardous Materials, 300, 175–181.CrossRef Jin, Y., et al. (2015). Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability. Journal of Hazardous Materials, 300, 175–181.CrossRef
Metadata
Title
Innovations in Textile Technology Against Pathogenic Threats: A Review of the Recent Literature
Authors
Camille Venne
Nhu-Nang Vu
Safa Ladhari
Phuong Nguyen-Tri
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-60255-9_6