Skip to main content
Top

2025 | OriginalPaper | Chapter

Innovative Hybrid Lattice Infilled Wing Design with Additive Manufacturing

Authors : Numan Khan, Aniello Riccio

Published in: Dynamic Response and Failure of Composite Materials

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lightweight structures with a high stiffness-to-weight ratio are crucial for reducing aerospace weight. Lattice infilled structures have proven superior to conventional ones, offering better stiffness, strength, and lower weight. Additive manufacturing (AM) enables the production of these complex lattice structures, overcoming traditional manufacturing challenges. Composite materials, known for their exceptional properties, especially in different environmental and flight conditions, are increasingly replacing metallic parts. Combining metallic lattice structures with composite skins offers an optimal solution for aircraft wing design, improving performance and reducing weight. This study assesses the feasibility of metallic and hybrid (metal-composite) lattice infilled wing for a drone compared to traditional spar-rib design using finite element analysis. A comprehensive design framework for AM was developed using nTop tool. Iterative simulations were conducted to find the optimal type and size of lattice unit cells under level flight loading conditions. The process involved Python coding for iterative simulations, resulting in significant weight reduction, lower stress, and reduced wing tip deflection for lattice structures. A comparative study also examined the replacement of metallic skins with composite skins for further weight reduction and enhanced performance. The findings highlight the potential of innovative lightweight hybrid wing designs for aerospace applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marino, M.. Sabatini, R.: Advanced lightweight aircraft design configurations for green operations. Proceedings of the Practical Responses to Climate Change, p. 1–9 (2014) Marino, M.. Sabatini, R.: Advanced lightweight aircraft design configurations for green operations. Proceedings of the Practical Responses to Climate Change, p. 1–9 (2014)
2.
go back to reference Das, G.K., Ranjan, P., James, K.A.: 3D topology optimization of aircraft wings with conventional and non-conventional layouts: a comparative study. In: AIAA AVIATION 2022 Forum (2022) Das, G.K., Ranjan, P., James, K.A.: 3D topology optimization of aircraft wings with conventional and non-conventional layouts: a comparative study. In: AIAA AVIATION 2022 Forum (2022)
3.
go back to reference Kouach, M.: Methods for modelling lattice structures (2019) Kouach, M.: Methods for modelling lattice structures (2019)
4.
go back to reference Zudova, L., et al.: Hybrid structural layout of wing box for small aeroplane. In: MATEC Web of Conferences. EDP Sciences (2019) Zudova, L., et al.: Hybrid structural layout of wing box for small aeroplane. In: MATEC Web of Conferences. EDP Sciences (2019)
5.
go back to reference Ferro, C.G., et al.: Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process. Materials Today Communications 15, 185–189 (2018)CrossRef Ferro, C.G., et al.: Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process. Materials Today Communications 15, 185–189 (2018)CrossRef
6.
go back to reference Abdelkader, A., et al.: Aeroelastic tailoring of metallic wing structures. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t. (2011) Abdelkader, A., et al.: Aeroelastic tailoring of metallic wing structures. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t. (2011)
7.
go back to reference Khan, N., Acanfora, V., Riccio, A.: Non-conventional wing structure design with lattice infilled through design for additive manufacturing. Materials 17(7), 1470 (2024)CrossRefPubMedPubMedCentral Khan, N., Acanfora, V., Riccio, A.: Non-conventional wing structure design with lattice infilled through design for additive manufacturing. Materials 17(7), 1470 (2024)CrossRefPubMedPubMedCentral
8.
go back to reference Lumpe, T.S., Shea, K.: Computational design of multi-state lattice structures with finite mechanisms for shape morphing. J. Mech. Des. 145(7), 071701 (2023)CrossRef Lumpe, T.S., Shea, K.: Computational design of multi-state lattice structures with finite mechanisms for shape morphing. J. Mech. Des. 145(7), 071701 (2023)CrossRef
9.
go back to reference Opgenoord, M.M., Willcox, K.E.: Aeroelastic tailoring using additively manufactured lattice structures. In: 2018 Multidisciplinary Analysis and Optimization Conference (2018) Opgenoord, M.M., Willcox, K.E.: Aeroelastic tailoring using additively manufactured lattice structures. In: 2018 Multidisciplinary Analysis and Optimization Conference (2018)
10.
go back to reference Jenett, B., et al.: Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Rob. 4(1), 33–48 (2017)CrossRef Jenett, B., et al.: Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures. Soft Rob. 4(1), 33–48 (2017)CrossRef
11.
go back to reference Alsaidi, B., Joe, W.Y., Akbar, M.: Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft. Aerospace Science Technology 6(7), 79 (2019) Alsaidi, B., Joe, W.Y., Akbar, M.: Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft. Aerospace Science Technology 6(7), 79 (2019)
12.
go back to reference Saran, O.S., et al.: 3D printing of composite materials: a short review. Materials Today: Proceedings 64, 615–619 (2022) Saran, O.S., et al.: 3D printing of composite materials: a short review. Materials Today: Proceedings 64, 615–619 (2022)
13.
go back to reference Bhong, M., et al.: Review of composite materials and applications. Materials Today: Proceedings (2023) Bhong, M., et al.: Review of composite materials and applications. Materials Today: Proceedings (2023)
14.
go back to reference Marsh, G.J.R.P.: Airbus A350 XWB update. 54(6), 20–24 (2010) Marsh, G.J.R.P.: Airbus A350 XWB update. 54(6), 20–24 (2010)
15.
go back to reference Šančić, T., et al.: Experimental characterization of composite-printed materials for the production of multirotor UAV airframe parts. Materials 16(14), 5060 (2023)CrossRefPubMedPubMedCentral Šančić, T., et al.: Experimental characterization of composite-printed materials for the production of multirotor UAV airframe parts. Materials 16(14), 5060 (2023)CrossRefPubMedPubMedCentral
16.
go back to reference Acanfora, V., et al.: Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications. Aerospace Sci. Technol. 137, 108276 (2023)CrossRef Acanfora, V., et al.: Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications. Aerospace Sci. Technol. 137, 108276 (2023)CrossRef
17.
go back to reference Mishra, P.K., Jagadesh, T.: Applications and challenges of 3D printed polymer composites in the emerging domain of automotive and aerospace: a converged review. J. Inst. Eng. Series D 104(2), 849–866 (2023)CrossRef Mishra, P.K., Jagadesh, T.: Applications and challenges of 3D printed polymer composites in the emerging domain of automotive and aerospace: a converged review. J. Inst. Eng. Series D 104(2), 849–866 (2023)CrossRef
18.
go back to reference Zaharia, S.-M., et al.: Material extrusion additive manufacturing of the composite UAV used for search-and-rescue missions. Drones 7(10), 602 (2023)CrossRef Zaharia, S.-M., et al.: Material extrusion additive manufacturing of the composite UAV used for search-and-rescue missions. Drones 7(10), 602 (2023)CrossRef
19.
go back to reference Battaglia, M., et al.: An innovative approach to a UAV tails structural design for additive manufacturing. Polymer Composites (2024) Battaglia, M., et al.: An innovative approach to a UAV tails structural design for additive manufacturing. Polymer Composites (2024)
20.
go back to reference Inagaki, I., et al.: Application and features of titanium for the aerospace industry. Nippon Steel Sumitomo Metal Technical Report 106(106), 22–27 (2014) Inagaki, I., et al.: Application and features of titanium for the aerospace industry. Nippon Steel Sumitomo Metal Technical Report 106(106), 22–27 (2014)
21.
go back to reference Di Caprio, F., et al.: Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing 6(6), 71 (2019) Di Caprio, F., et al.: Hybrid Metal/Composite Lattice Structures: Design for Additive Manufacturing 6(6), 71 (2019)
22.
go back to reference Gu, D.D., et al.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef Gu, D.D., et al.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef
24.
go back to reference Schrenk, O.: A simple approximation method for obtaining the spanwise lift distribution. The Aeronautical J. 45(370), 331–336 (1941)CrossRef Schrenk, O.: A simple approximation method for obtaining the spanwise lift distribution. The Aeronautical J. 45(370), 331–336 (1941)CrossRef
25.
go back to reference Corke, T.C.: Design of Aircraft. Prentice Hall (2003) Corke, T.C.: Design of Aircraft. Prentice Hall (2003)
26.
go back to reference Agency, E.A.S.: EASA, Certification Specifications, CS-23, European Aviation Safety Agency (2015) Agency, E.A.S.: EASA, Certification Specifications, CS-23, European Aviation Safety Agency (2015)
27.
go back to reference Agency, E.A.S., Easa, C.-V.: Certification Specifications, CS-VLA, European Aviation Safety Agency, 2009. EASA Cologne, Germany (2009) Agency, E.A.S., Easa, C.-V.: Certification Specifications, CS-VLA, European Aviation Safety Agency, 2009. EASA Cologne, Germany (2009)
28.
go back to reference Acanfora, V., Castaldo, R., Riccio, A.: On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing. Materials 15(4), 1291 (2022)CrossRefPubMedPubMedCentral Acanfora, V., Castaldo, R., Riccio, A.: On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing. Materials 15(4), 1291 (2022)CrossRefPubMedPubMedCentral
Metadata
Title
Innovative Hybrid Lattice Infilled Wing Design with Additive Manufacturing
Authors
Numan Khan
Aniello Riccio
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77697-7_20

Premium Partners