Skip to main content
Top

2025 | OriginalPaper | Chapter

9. Integrated System for Biojet Fuel Production

Authors : Edwin Santiago Rios Escalante, Pedro Teixeira Lacava, João Andrade de Carvalho Júnior

Published in: Sustainable Aviation Fuels

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aeronautical industry is under significant pressure to reduce greenhouse gas (GHG) emissions by up to 50% by 2050 compared to 2005 levels. Biojet fuels emerge as a promising solution, offering the potential to be used in existing aircraft engines without modifications. However, the implementation of biojet fuels faces several obstacles, including economic competitiveness, raw material supply, and certification challenges. This chapter explores the complexities of the biojet fuel supply chain, from raw material cultivation and harvesting to production, storage, and transport. It delves into the various conversion technologies available, such as Hydroprocessed Esters and Fatty Acids (HEFA), Alcohol-to-Jet (ATJ), Fischer-Tropsch (FT), Syngas Fermentation (SF), and Direct Sugar to Hydrocarbons (DSHC), each with its own advantages and limitations. The techno-economic analysis reveals that while individual conversion routes like HEFA and FT show promise, an integrated system approach could be more viable for large-scale production. This integrated system not only maximizes the use of raw materials like sugarcane, jatropha, and eucalyptus but also generates valuable co-products, reducing overall production costs. The environmental assessment highlights that an integrated system can achieve lower net CO2 emissions compared to fossil jet fuel, making it a sustainable alternative. The chapter also discusses the potential of Brazil as a strategic player in biojet fuel production, leveraging its vast biomass resources and favorable climatic conditions. The findings underscore the need for a balanced approach that considers economic viability, environmental impact, and technological integration to pave the way for a sustainable future in aviation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Pavlenko, N., & Kharina, A. (2018). Policy and environmental implications of using HEFA+ for aviation. International Council on Clean Transportation, 9, 1–9. Pavlenko, N., & Kharina, A. (2018). Policy and environmental implications of using HEFA+ for aviation. International Council on Clean Transportation, 9, 1–9.
4.
go back to reference Calçado, D., Fleury, G., Henrique, T., Oliveira, J., Côrtes, R., Dupont, R., et al. (2019). Brazil’s action plan on CO2 emissions reduction from aviation. Brasilia. Calçado, D., Fleury, G., Henrique, T., Oliveira, J., Côrtes, R., Dupont, R., et al. (2019). Brazil’s action plan on CO2 emissions reduction from aviation. Brasilia.
6.
go back to reference RSB & A. (2021). Feedstock availability for sustainable aviation fuel in Brazil: Challenges and opportunities. Switzerland. RSB & A. (2021). Feedstock availability for sustainable aviation fuel in Brazil: Challenges and opportunities. Switzerland.
9.
go back to reference do Petróleo, A. N., & Tayane, F. (2021). Anuário estatístico brasileiro do petróleo, gás natural e biocumbustíveis: 2014. Anp/Mme, 33, 1–12. do Petróleo, A. N., & Tayane, F. (2021). Anuário estatístico brasileiro do petróleo, gás natural e biocumbustíveis: 2014. Anp/Mme, 33, 1–12.
13.
go back to reference Cremonez, A. P., Feroldi, M., Araújo, A. V., Negreiros Borges, M., Thompson, W. M., Feiden, A., et al. (2015). Biofuels in a Braziliam aviation: Current scenario and prospects. Renewable and Sustainable Energy Reviews, 43, 1063–1072.CrossRef Cremonez, A. P., Feroldi, M., Araújo, A. V., Negreiros Borges, M., Thompson, W. M., Feiden, A., et al. (2015). Biofuels in a Braziliam aviation: Current scenario and prospects. Renewable and Sustainable Energy Reviews, 43, 1063–1072.CrossRef
18.
go back to reference Alves, C. M., Valk, M., de Jong, S., Bonomi, A., van der Wielen, L. A. M., & Mussato, S. I. (2016). Techno-economic assessment of biorefi nery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioproducts and Biorefining, 11, 67–91. https://doi.org/10.1002/bbb.1711CrossRef Alves, C. M., Valk, M., de Jong, S., Bonomi, A., van der Wielen, L. A. M., & Mussato, S. I. (2016). Techno-economic assessment of biorefi nery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioproducts and Biorefining, 11, 67–91. https://​doi.​org/​10.​1002/​bbb.​1711CrossRef
19.
go back to reference Milanez, A. Y., Mancuso, R. V., Godinho, R. D., & Poppe, M. K. (2017). O Acordo de Paris e a transição para o setor de transportes de baixo carbono: o papel da Plataforma para o Biofuturo. BNDES Setorial, 45, 285–340. Milanez, A. Y., Mancuso, R. V., Godinho, R. D., & Poppe, M. K. (2017). O Acordo de Paris e a transição para o setor de transportes de baixo carbono: o papel da Plataforma para o Biofuturo. BNDES Setorial, 45, 285–340.
25.
go back to reference Mendez, C. J., Parthasarathy, R. N., & Gollahalli, S. R. (2011). Performance and emission characteristics of a small scale gas turbine engine fueled with propanol/jet a blends. In ASME 2011 international mechanical engineering congress and exposition IMECE 2011 (Vol. 4, pp. 1359–1370). ASME. Mendez, C. J., Parthasarathy, R. N., & Gollahalli, S. R. (2011). Performance and emission characteristics of a small scale gas turbine engine fueled with propanol/jet a blends. In ASME 2011 international mechanical engineering congress and exposition IMECE 2011 (Vol. 4, pp. 1359–1370). ASME.
31.
go back to reference EPE. (2021). Análise de Conjuntura dos Biocombustíveis – Ano 2020. EPE – Empres Pesqui Energética, p. 87. EPE. (2021). Análise de Conjuntura dos Biocombustíveis – Ano 2020. EPE – Empres Pesqui Energética, p. 87.
36.
go back to reference Mendes, L., Treichel, M., & Beling, R. R. (2016). Anuario Brasileiro de Silvicultura (Brazilian forestry and timber yearbook). Gráfica Coan. Mendes, L., Treichel, M., & Beling, R. R. (2016). Anuario Brasileiro de Silvicultura (Brazilian forestry and timber yearbook). Gráfica Coan.
38.
go back to reference Macedo, I. C. (2007). The current situation and prospects for ethanol. Estudos Avançados, 21, 157–165.CrossRef Macedo, I. C. (2007). The current situation and prospects for ethanol. Estudos Avançados, 21, 157–165.CrossRef
46.
go back to reference Zhang, M., & Yu, Y. (2013). Dehydration of ethanol to ethylene. Industrial and Engineering Chemistry Research, 52, 9505–9514.CrossRef Zhang, M., & Yu, Y. (2013). Dehydration of ethanol to ethylene. Industrial and Engineering Chemistry Research, 52, 9505–9514.CrossRef
49.
go back to reference Pereira, L. G., Dias, M. O. S., Junqueira, T. L., Pavanello, L. G., Chagas, M. F., Cavalett, O., et al. (2014). Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, 92, 1452–1462. https://doi.org/10.1016/j.cherd.2014.04.032CrossRef Pereira, L. G., Dias, M. O. S., Junqueira, T. L., Pavanello, L. G., Chagas, M. F., Cavalett, O., et al. (2014). Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, 92, 1452–1462. https://​doi.​org/​10.​1016/​j.​cherd.​2014.​04.​032CrossRef
55.
go back to reference Lora, E. E. S., Andrade, R. V., Ángel, J. D. M., Leite, M. A. H., Rocha, M. H., de Sales, C. A. V. B., et al. (2012). Gaseificação e pirólise para conversão da biomassa em eletricidade e biocombustíveis. Biocombustíveis, 1, 411–498. Lora, E. E. S., Andrade, R. V., Ángel, J. D. M., Leite, M. A. H., Rocha, M. H., de Sales, C. A. V. B., et al. (2012). Gaseificação e pirólise para conversão da biomassa em eletricidade e biocombustíveis. Biocombustíveis, 1, 411–498.
67.
go back to reference Plevin, R. J., O’Hare, M., Jones, A. D., Torn, M. S., & Gibbs, H. K. (2010). Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environmental Science & Technology, 44, 8015–8021. https://doi.org/10.1021/es101946tCrossRef Plevin, R. J., O’Hare, M., Jones, A. D., Torn, M. S., & Gibbs, H. K. (2010). Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environmental Science & Technology, 44, 8015–8021. https://​doi.​org/​10.​1021/​es101946tCrossRef
69.
go back to reference Staples, M. D., Malina, R., Olcay, H., Pearlson, M. N., Hileman, J. I., Boies, A., et al. (2014). Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy & Environmental Science, 7, 1545–1554. https://doi.org/10.1039/c3ee43655aCrossRef Staples, M. D., Malina, R., Olcay, H., Pearlson, M. N., Hileman, J. I., Boies, A., et al. (2014). Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy & Environmental Science, 7, 1545–1554. https://​doi.​org/​10.​1039/​c3ee43655aCrossRef
70.
go back to reference Staples, M. D., Olcay, H., Malina, R., Trivedi, P., Pearlson, M. N., Strzepek, K., et al. (2013). Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production. Environmental Science & Technology, 47, 12557–12565. https://doi.org/10.1021/es4030782CrossRef Staples, M. D., Olcay, H., Malina, R., Trivedi, P., Pearlson, M. N., Strzepek, K., et al. (2013). Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production. Environmental Science & Technology, 47, 12557–12565. https://​doi.​org/​10.​1021/​es4030782CrossRef
71.
go back to reference Cox, K., Renouf, M., Dargan, A., Turner, C., & Klein-Marcuschamer, D. (2014). Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuels, Bioproducts and Biorefining, 8, 579–593. https://doi.org/10.1002/bbb.1488CrossRef Cox, K., Renouf, M., Dargan, A., Turner, C., & Klein-Marcuschamer, D. (2014). Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuels, Bioproducts and Biorefining, 8, 579–593. https://​doi.​org/​10.​1002/​bbb.​1488CrossRef
74.
go back to reference Davis, R., Tao, L., Tan, E. C. D., Biddy, M. J., Beckham, G. T., Scarlata, C., et al. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy Laboratory, 147. https://www.nrel.gov/docs/fy15osti/62498.pdf. Accessed May 08, 2022. Davis, R., Tao, L., Tan, E. C. D., Biddy, M. J., Beckham, G. T., Scarlata, C., et al. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy Laboratory, 147. https://​www.​nrel.​gov/​docs/​fy15osti/​62498.​pdf. Accessed May 08, 2022.
76.
go back to reference ANAC-Agência Nacional de Aviação Civil. (2019). Anuário do Transporte Aéreo 2018 (in portuguese). ANAC-Agência Nacional de Aviação Civil. ANAC-Agência Nacional de Aviação Civil. (2019). Anuário do Transporte Aéreo 2018 (in portuguese). ANAC-Agência Nacional de Aviação Civil.
77.
go back to reference Centro de Gestão e Estudos Estratégicos. (2010). Biocombustíveis aeronáuticos: Progressos e desafios. Série Documentos Técnicos, 8(5), 6. Centro de Gestão e Estudos Estratégicos. (2010). Biocombustíveis aeronáuticos: Progressos e desafios. Série Documentos Técnicos, 8(5), 6.
78.
go back to reference de Jong, S., van Stralen, J., Londo, M., Hoefnagels, R., Faaij, A., & Junginger, M. (2018). Renewable jet fuel supply scenarios in the European Union in 2021–2030 in the context of proposed biofuel policy and competing biomass demand. GCB Bioenergy, 10, 661–682. https://doi.org/10.1111/gcbb.12525CrossRef de Jong, S., van Stralen, J., Londo, M., Hoefnagels, R., Faaij, A., & Junginger, M. (2018). Renewable jet fuel supply scenarios in the European Union in 2021–2030 in the context of proposed biofuel policy and competing biomass demand. GCB Bioenergy, 10, 661–682. https://​doi.​org/​10.​1111/​gcbb.​12525CrossRef
79.
go back to reference Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R., & Slade, R. (2016). Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels, Bioproducts and Biorefining, 10, 462–484. https://doi.org/10.1002/bbbCrossRef Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R., & Slade, R. (2016). Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels, Bioproducts and Biorefining, 10, 462–484. https://​doi.​org/​10.​1002/​bbbCrossRef
90.
go back to reference Hong, T. D., Soerawidjaja, T. H., Reksowardojo, I. K., Fujita, O., Duniani, Z., & Pham, M. X. (2013). A study on developing aviation biofuel for the tropics: Production process – Experimental and theoretical evaluation of their blends with fossil kerosene. Chemical Engineering and Processing Process Intensification, 74, 124–130. https://doi.org/10.1016/j.cep.2013.09.013CrossRef Hong, T. D., Soerawidjaja, T. H., Reksowardojo, I. K., Fujita, O., Duniani, Z., & Pham, M. X. (2013). A study on developing aviation biofuel for the tropics: Production process – Experimental and theoretical evaluation of their blends with fossil kerosene. Chemical Engineering and Processing Process Intensification, 74, 124–130. https://​doi.​org/​10.​1016/​j.​cep.​2013.​09.​013CrossRef
93.
Metadata
Title
Integrated System for Biojet Fuel Production
Authors
Edwin Santiago Rios Escalante
Pedro Teixeira Lacava
João Andrade de Carvalho Júnior
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-83721-0_9

Premium Partner