Skip to main content
Top

2024 | OriginalPaper | Chapter

Integrated System of Exhaust Air Heat Pump and Advanced Air Distribution for Energy-Efficient Provision of Outdoor Air

Authors : Sheng Zhang, Yuxin Li, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To effectively mitigate the risk of respiratory diseases, a significant supply of fresh outdoor air is necessary. However, this requirement results in a considerable increase in energy consumption. This chapter introduces an innovative integrated approach that combines an exhaust air heat pump (EAHP) and advanced air distribution to address this challenge. The findings demonstrate that the integration of the EAHP with advanced air distribution achieves energy savings through three key mechanisms. Firstly, by utilizing the waste heat from the exhaust air, the EAHP decreases the condensation temperature, thus enhancing the coefficient of performance. Secondly, advanced air distribution reduces the ventilation load. Lastly, advanced air distribution lowers the condensation temperature and raises the evaporation temperature, further improving the coefficient of performance. The EAHP alone achieves energy savings of 18%, while advanced air distribution contributes to energy savings of 36%. When combined, the integrated system achieves energy savings of 45%. When compared to a conventional system utilizing an outdoor air heat pump (OAHP) with mixing ventilation, the proposed integrated system of OAHP with stratum ventilation achieves energy savings ranging from 21 to 35% across various outdoor air ratios and temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bazant MZ, Bush JW (2021) A guideline to limit indoor airborne transmission of COVID-19. Proc Nat Acad Sci 118(17):e2018995118 Bazant MZ, Bush JW (2021) A guideline to limit indoor airborne transmission of COVID-19. Proc Nat Acad Sci 118(17):e2018995118
2.
go back to reference Ding S, Teo ZW, Wan MP, Ng BF (2021) Aerosols from speaking can linger in the air for up to nine hours. Build Environ 205:108239CrossRef Ding S, Teo ZW, Wan MP, Ng BF (2021) Aerosols from speaking can linger in the air for up to nine hours. Build Environ 205:108239CrossRef
3.
go back to reference Nv D, Bushmaker T, Morris D, Holbrook M, Gamble A, Williamson B et al (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382(16):1564–1567CrossRef Nv D, Bushmaker T, Morris D, Holbrook M, Gamble A, Williamson B et al (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382(16):1564–1567CrossRef
4.
go back to reference Sodiq A, Khan MA, Naas M, Amhamed A (2021) Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: will an innovative air recirculation concept provide a practical solution? Environ Res 199:111329CrossRef Sodiq A, Khan MA, Naas M, Amhamed A (2021) Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: will an innovative air recirculation concept provide a practical solution? Environ Res 199:111329CrossRef
5.
go back to reference Fung TS, Liu DX (2019) Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 73:529–557CrossRef Fung TS, Liu DX (2019) Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 73:529–557CrossRef
6.
go back to reference Blocken B, Van Druenen T, Ricci A, Kang L, Van Hooff T, Qin P et al (2021) Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build Environ 193:107659CrossRef Blocken B, Van Druenen T, Ricci A, Kang L, Van Hooff T, Qin P et al (2021) Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Build Environ 193:107659CrossRef
7.
go back to reference Zhang S, Lin Z (2021) Dilution-based evaluation of airborne infection risk-Thorough expansion of Wells-Riley model. Build Environ 194:107674CrossRef Zhang S, Lin Z (2021) Dilution-based evaluation of airborne infection risk-Thorough expansion of Wells-Riley model. Build Environ 194:107674CrossRef
8.
go back to reference Morawska L, Cao J (2020) Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 139:105730CrossRef Morawska L, Cao J (2020) Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 139:105730CrossRef
9.
go back to reference Lednicky JA, Lauzardo M, Fan ZH, Jutla A, Tilly TB, Gangwar M et al (2020) Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis 100:476–482CrossRef Lednicky JA, Lauzardo M, Fan ZH, Jutla A, Tilly TB, Gangwar M et al (2020) Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis 100:476–482CrossRef
10.
go back to reference Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z et al (2020) Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med 180(12):1665–1671CrossRef Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z et al (2020) Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med 180(12):1665–1671CrossRef
11.
go back to reference Miller SL, Nazaroff WW, Jimenez JL, Boerstra A, Buonanno G, Dancer SJ et al (2021) Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 31(2):314–323CrossRef Miller SL, Nazaroff WW, Jimenez JL, Boerstra A, Buonanno G, Dancer SJ et al (2021) Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 31(2):314–323CrossRef
12.
go back to reference Guo M, Xu P, Xiao T, He R, Dai M, Miller SL (2021) Review and comparison of HVAC operation guidelines in different countries during the COVID-19 pandemic. Build Environ 187:107368CrossRef Guo M, Xu P, Xiao T, He R, Dai M, Miller SL (2021) Review and comparison of HVAC operation guidelines in different countries during the COVID-19 pandemic. Build Environ 187:107368CrossRef
13.
go back to reference Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G et al (2020) How can airborne transmission of COVID-19 indoors be minimised? Environ Int 142:105832CrossRef Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G et al (2020) How can airborne transmission of COVID-19 indoors be minimised? Environ Int 142:105832CrossRef
14.
go back to reference Zhang S, Ai Z, Lin Z (2021) Occupancy-aided ventilation for both airborne infection risk control and work productivity. Build Environ 188:107506CrossRef Zhang S, Ai Z, Lin Z (2021) Occupancy-aided ventilation for both airborne infection risk control and work productivity. Build Environ 188:107506CrossRef
15.
go back to reference Pease LF, Wang N, Salsbury TI, Underhill RM, Flaherty JE, Vlachokostas A et al (2021) Investigation of potential aerosol transmission and infectivity of SARS-CoV-2 through central ventilation systems. Build Environ 197:107633CrossRef Pease LF, Wang N, Salsbury TI, Underhill RM, Flaherty JE, Vlachokostas A et al (2021) Investigation of potential aerosol transmission and infectivity of SARS-CoV-2 through central ventilation systems. Build Environ 197:107633CrossRef
16.
go back to reference Du CR, Wang SC, Yu MC, Chiu TF, Wang JY, Chuang PC et al (2020) Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air 30(3):422–432CrossRef Du CR, Wang SC, Yu MC, Chiu TF, Wang JY, Chuang PC et al (2020) Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air 30(3):422–432CrossRef
17.
go back to reference Organization W. H. (2020) Infection prevention and control during health care when COVID-19 is suspected: interim guidance. World Health Organization, vol 27. https://www.who. int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125. Accessed July 2020 Organization W. H. (2020) Infection prevention and control during health care when COVID-19 is suspected: interim guidance. World Health Organization, vol 27. https://​www.​who. int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125. Accessed July 2020
18.
go back to reference Melikov AK (2020) COVID-19: Reduction of airborne transmission needs paradigm shift in ventilation. Build Environ 186:107336CrossRef Melikov AK (2020) COVID-19: Reduction of airborne transmission needs paradigm shift in ventilation. Build Environ 186:107336CrossRef
19.
go back to reference Cheng Y, Zhang S, Huan C, Oladokun MO, Lin Z (2019) Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving. Build Environ 147:11–22CrossRef Cheng Y, Zhang S, Huan C, Oladokun MO, Lin Z (2019) Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving. Build Environ 147:11–22CrossRef
20.
go back to reference Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef Cao G, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R et al (2014) A review of the performance of different ventilation and airflow distribution systems in buildings. Build Environ 73:171–186CrossRef
21.
go back to reference Yang B, Melikov AK, Kabanshi A, Zhang C, Bauman FS, Cao G et al (2019) A review of advanced air distribution methods-theory, practice, limitations and solutions. Energy Build 202:109359CrossRef Yang B, Melikov AK, Kabanshi A, Zhang C, Bauman FS, Cao G et al (2019) A review of advanced air distribution methods-theory, practice, limitations and solutions. Energy Build 202:109359CrossRef
22.
go back to reference Lu Y, Oladokun M, Lin Z (2020) Reducing the exposure risk in hospital wards by applying stratum ventilation system. Build Environ 183:107204CrossRef Lu Y, Oladokun M, Lin Z (2020) Reducing the exposure risk in hospital wards by applying stratum ventilation system. Build Environ 183:107204CrossRef
23.
go back to reference Pei G, Taylor M, Rim D (2021) Human exposure to respiratory aerosols in a ventilated room: effects of ventilation condition, emission mode, and social distancing. Sustain Cities Soc 73:103090CrossRef Pei G, Taylor M, Rim D (2021) Human exposure to respiratory aerosols in a ventilated room: effects of ventilation condition, emission mode, and social distancing. Sustain Cities Soc 73:103090CrossRef
24.
go back to reference Ren J, Wang Y, Liu Q, Liu Y (2021) Numerical study of three ventilation strategies in a prefabricated COVID-19 inpatient ward. Build Environ 188:107467CrossRef Ren J, Wang Y, Liu Q, Liu Y (2021) Numerical study of three ventilation strategies in a prefabricated COVID-19 inpatient ward. Build Environ 188:107467CrossRef
25.
go back to reference Zhang Y, Han O, Li A, Olofsson T, Zhang L, Lei W (2022) Adaptive wall-based attachment ventilation: a comparative study on its effectiveness in airborne infection isolation rooms with negative pressure. Engineering 8:130–137CrossRef Zhang Y, Han O, Li A, Olofsson T, Zhang L, Lei W (2022) Adaptive wall-based attachment ventilation: a comparative study on its effectiveness in airborne infection isolation rooms with negative pressure. Engineering 8:130–137CrossRef
26.
go back to reference Mokhtari R, Jahangir MH (2021) The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: a case study of university building. Build Environ 190:107561CrossRef Mokhtari R, Jahangir MH (2021) The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: a case study of university building. Build Environ 190:107561CrossRef
27.
go back to reference Wang J, Huang J, Feng Z, Cao S-J, Haghighat F (2021) Occupant-density-detection based energy efficient ventilation system: Prevention of infection transmission. Energy Build 240:110883CrossRef Wang J, Huang J, Feng Z, Cao S-J, Haghighat F (2021) Occupant-density-detection based energy efficient ventilation system: Prevention of infection transmission. Energy Build 240:110883CrossRef
28.
go back to reference Aviv D, Chen KW, Teitelbaum E, Sheppard D, Pantelic J, Rysanek A et al (2021) A fresh (air) look at ventilation for COVID-19: estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies. Appl Energy 292:116848CrossRef Aviv D, Chen KW, Teitelbaum E, Sheppard D, Pantelic J, Rysanek A et al (2021) A fresh (air) look at ventilation for COVID-19: estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies. Appl Energy 292:116848CrossRef
29.
go back to reference Hsieh Y-Y, Chuang Y-H, Hou T-F, Huang B-J (2018) A study of heat-pump fresh air exchanger. Appl Therm Eng 132:708–718CrossRef Hsieh Y-Y, Chuang Y-H, Hou T-F, Huang B-J (2018) A study of heat-pump fresh air exchanger. Appl Therm Eng 132:708–718CrossRef
30.
go back to reference Institute A.N.S. (2001) Ventilation for acceptable indoor air quality, vol 62. American Society of Heating Refrigerating and Air-Conditioning Engineers Institute A.N.S. (2001) Ventilation for acceptable indoor air quality, vol 62. American Society of Heating Refrigerating and Air-Conditioning Engineers
31.
go back to reference Siegele D, Ochs F, Feist W (2019) Novel speed-controlled exhaust-air to supply-air heat pump combined with a ventilation system. Appl Therm Eng 162:114230CrossRef Siegele D, Ochs F, Feist W (2019) Novel speed-controlled exhaust-air to supply-air heat pump combined with a ventilation system. Appl Therm Eng 162:114230CrossRef
32.
go back to reference Fracastoro GV, Serraino M (2010) Energy analyses of buildings equipped with exhaust air heat pumps (EAHP). Energy Build 42(8):1283–1289CrossRef Fracastoro GV, Serraino M (2010) Energy analyses of buildings equipped with exhaust air heat pumps (EAHP). Energy Build 42(8):1283–1289CrossRef
33.
go back to reference Cao X, Yang C, Sun Z, Lu Y-M, Chang M-M, Shao L-L et al (2020) A novel packaged outdoor air dehumidifier with exhaust air heat pump–Experiment and simulation. Appl Therm Eng 181:115986CrossRef Cao X, Yang C, Sun Z, Lu Y-M, Chang M-M, Shao L-L et al (2020) A novel packaged outdoor air dehumidifier with exhaust air heat pump–Experiment and simulation. Appl Therm Eng 181:115986CrossRef
34.
go back to reference Liu Z, Li W, Chen Y, Luo Y, Zhang L (2019) Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl Therm Eng 148:544–556CrossRef Liu Z, Li W, Chen Y, Luo Y, Zhang L (2019) Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl Therm Eng 148:544–556CrossRef
35.
go back to reference Li W, Shi W, Wang J, Li Y, Lu J (2021) Experimental study of a novel household exhaust air heat pump enhanced by indirect evaporative cooling. Energy Build 236:110808CrossRef Li W, Shi W, Wang J, Li Y, Lu J (2021) Experimental study of a novel household exhaust air heat pump enhanced by indirect evaporative cooling. Energy Build 236:110808CrossRef
36.
go back to reference Schibuola L, Tambani C (2021) Performance comparison of heat recovery systems to reduce viral contagion in indoor environments. Appl Therm Eng 190:116843CrossRef Schibuola L, Tambani C (2021) Performance comparison of heat recovery systems to reduce viral contagion in indoor environments. Appl Therm Eng 190:116843CrossRef
37.
go back to reference Zhou F, Duan W, Ma G (2017) Thermal performance of a pump-driven loop heat pipe as an air-to-air energy recovery device. Energy Build 151:206–216CrossRef Zhou F, Duan W, Ma G (2017) Thermal performance of a pump-driven loop heat pipe as an air-to-air energy recovery device. Energy Build 151:206–216CrossRef
38.
go back to reference Shirani A, Merzkirch A, Roesler J, Leyer S, Scholzen F, Maas S (2021) Experimental and analytical evaluation of exhaust air heat pumps in ventilation-based heating systems. J Build Eng 44:102638CrossRef Shirani A, Merzkirch A, Roesler J, Leyer S, Scholzen F, Maas S (2021) Experimental and analytical evaluation of exhaust air heat pumps in ventilation-based heating systems. J Build Eng 44:102638CrossRef
39.
go back to reference Schibuola L, Tambani C (2021) High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy Build 240:110882CrossRef Schibuola L, Tambani C (2021) High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy Build 240:110882CrossRef
40.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2018) Heat removal efficiency based multi-node model for both stratum ventilation and displacement ventilation. Build Environ 143:24–35CrossRef
41.
go back to reference Zhang S, Cheng Y, Oladokun MO, Huan C, Lin Z (2019) Heat removal efficiency of stratum ventilation for air-side modulation. Appl Energy 238:1237–1249CrossRef Zhang S, Cheng Y, Oladokun MO, Huan C, Lin Z (2019) Heat removal efficiency of stratum ventilation for air-side modulation. Appl Energy 238:1237–1249CrossRef
42.
go back to reference Zhang S, Ai Z, Lin Z (2021) Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving. Appl Energy 293:116954CrossRef Zhang S, Ai Z, Lin Z (2021) Novel demand-controlled optimization of constant-air-volume mechanical ventilation for indoor air quality, durability and energy saving. Appl Energy 293:116954CrossRef
43.
go back to reference Liu H, Zhang Z, Li H, Wang S, Hu B, Wang R (2020) Research and development of a permanent-magnet synchronous frequency-convertible centrifugal compressor. Int J Refrig 117:33–43CrossRef Liu H, Zhang Z, Li H, Wang S, Hu B, Wang R (2020) Research and development of a permanent-magnet synchronous frequency-convertible centrifugal compressor. Int J Refrig 117:33–43CrossRef
44.
go back to reference Wang J, Brown C, Cleland D (2018) Heat pump heat recovery options for food industry dryers. Int J Refrig 86:48–55CrossRef Wang J, Brown C, Cleland D (2018) Heat pump heat recovery options for food industry dryers. Int J Refrig 86:48–55CrossRef
45.
go back to reference Kinab E, Marchio D, Rivière P, Zoughaib A (2010) Reversible heat pump model for seasonal performance optimization. Energy and Build 42(12):2269–2280CrossRef Kinab E, Marchio D, Rivière P, Zoughaib A (2010) Reversible heat pump model for seasonal performance optimization. Energy and Build 42(12):2269–2280CrossRef
46.
go back to reference Zhang S, Niu D, Lin Z (2022) Extending effective draft temperature to cover full range of air velocity. Build Environ 210 Zhang S, Niu D, Lin Z (2022) Extending effective draft temperature to cover full range of air velocity. Build Environ 210
47.
go back to reference Yin H, Li L, Wu R, Wang Y, Li A (2021) A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation. In: Building simulation. Springer, Berlin Yin H, Li L, Wu R, Wang Y, Li A (2021) A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation. In: Building simulation. Springer, Berlin
48.
go back to reference Liu F, Zhang T, Yang L, Long Z (2022) An improved wall-mounted displacement ventilation system in a large-span machining workshop. In: Building simulation. Springer, Berlin Liu F, Zhang T, Yang L, Long Z (2022) An improved wall-mounted displacement ventilation system in a large-span machining workshop. In: Building simulation. Springer, Berlin
49.
go back to reference Zhang S, Lu Y, Niu D, Lin Z (2022) Energy performance index of air distribution: thermal utilization effectiveness. Appl Energy 307:118122CrossRef Zhang S, Lu Y, Niu D, Lin Z (2022) Energy performance index of air distribution: thermal utilization effectiveness. Appl Energy 307:118122CrossRef
50.
go back to reference Zhang S, Niu D, Lin Z (2022) Index of ventilation effectiveness regarding energy performance considering cooling effect of air movement: equivalent thermal utilization effectiveness. Build Environ 212 Zhang S, Niu D, Lin Z (2022) Index of ventilation effectiveness regarding energy performance considering cooling effect of air movement: equivalent thermal utilization effectiveness. Build Environ 212
51.
go back to reference Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef
52.
go back to reference Zhang S, Lin Z (2020) Predicted Mean Vote with skin temperature from standard effective temperature model. Build Environ 183 Zhang S, Lin Z (2020) Predicted Mean Vote with skin temperature from standard effective temperature model. Build Environ 183
53.
go back to reference Zhang S, Cheng Y, Huan C, Lin Z (2019) Equivalent room air temperature based cooling load estimation method for stratum ventilation and displacement ventilation. Build Environ 148:67–81CrossRef Zhang S, Cheng Y, Huan C, Lin Z (2019) Equivalent room air temperature based cooling load estimation method for stratum ventilation and displacement ventilation. Build Environ 148:67–81CrossRef
54.
go back to reference Li S, Gong G, Peng J (2019) Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone. Appl Energy 254 Li S, Gong G, Peng J (2019) Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone. Appl Energy 254
55.
go back to reference Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef Zhang S, Cheng Y, Fang Z, Lin Z (2018) Dynamic control of room air temperature for stratum ventilation based on heat removal efficiency: method and experimental validations. Build Environ 140:107–118CrossRef
56.
go back to reference Zhang Z-Y, Zhang C-L, Ge M-C, Yu Y (2018) A frost-free dedicated outdoor air system with exhaust air heat recovery. Appl Therm Eng 128:1041–1050CrossRef Zhang Z-Y, Zhang C-L, Ge M-C, Yu Y (2018) A frost-free dedicated outdoor air system with exhaust air heat recovery. Appl Therm Eng 128:1041–1050CrossRef
Metadata
Title
Integrated System of Exhaust Air Heat Pump and Advanced Air Distribution for Energy-Efficient Provision of Outdoor Air
Authors
Sheng Zhang
Yuxin Li
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_17