Skip to main content
Top
Published in:

03-06-2024

Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review

Authors: Adisa Hammed Akinsoji, Bashir Adelodun, Qudus Adeyi, Rahmon Abiodun Salau, Golden Odey, Kyung Sook Choi

Published in: Water Resources Management | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The occurrence of natural disasters, accelerated by climate change, has become a continuous menace to the environment and consequently impacts the socioeconomic well-being of people. Flood events are natural disasters resulting from excessive rainfall duration, intensity, and snow melt. Flood disaster management systems that are machine learning-based have been increasingly suggested and applied to forestall the impacts of floods on the environment in terms of monitoring and warning. This study aims to critically review various studies conducted on flood management systems to identify applicable data sources and machine learning models. The study applied Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to source data from an academic database using some selected keywords, which were identified for the review process after filtering a total number of forty-two pertinent research papers was used. The review identified different combinations of flood data, flood management techniques, flood models, application of machine learning in flood predictions, optimization techniques, data processing techniques, and evaluation techniques. The study concluded that a standard approach should be applied in building robust and efficient flood disaster management systems. Lastly, informed future research directions on using machine learning for flood prediction and susceptibility mapping are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS (2022) A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci Front 13(6):101373. https://doi.org/10.1016/j.gsf.2022.101373CrossRef Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS (2022) A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci Front 13(6):101373. https://​doi.​org/​10.​1016/​j.​gsf.​2022.​101373CrossRef
go back to reference Askar S, Zeraat Peyma S, Yousef MM, Prodanova NA, Muda I, Elsahabi M, Hatamiafkoueieh J (2022) Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms. Water (Switzerland) 14(19). https://doi.org/10.3390/w14193062 Askar S, Zeraat Peyma S, Yousef MM, Prodanova NA, Muda I, Elsahabi M, Hatamiafkoueieh J (2022) Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms. Water (Switzerland) 14(19). https://​doi.​org/​10.​3390/​w14193062
go back to reference Campos GO, Arthur Z, Jörg S, Campello RJGB, Micenková B, Schubert E, Assent I, Michael, ·, Houle E, Fuernkranz J, Zimek A, Sander J, Houle ME, Jp MA (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 30, 891–927. https://doi.org/10.1007/s10618-015-0444-8 Campos GO, Arthur Z, Jörg S, Campello RJGB, Micenková B, Schubert E, Assent I, Michael, ·, Houle E, Fuernkranz J, Zimek A, Sander J, Houle ME, Jp MA (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 30, 891–927. https://​doi.​org/​10.​1007/​s10618-015-0444-8
go back to reference Chen J, Li Y, Zhang S (2023) Fast prediction of Urban flooding water depth based on CNN− LSTM. Water, 15(7), 1397. Chen J, Li Y, Zhang S (2023) Fast prediction of Urban flooding water depth based on CNN− LSTM. Water, 15(7), 1397.
go back to reference Ekwueme BN (2022) Machine learning based prediction of urban flood susceptibility from selected rivers in a tropical catchment area. J Civ Eng, 8(9), 1857. Ekwueme BN (2022) Machine learning based prediction of urban flood susceptibility from selected rivers in a tropical catchment area. J Civ Eng, 8(9), 1857.
go back to reference Ghanim AAJ, Shaf A, Ali T, Zafar M, Al-Areeq AM, Alyami SH, Irfan M, Rahman S (2023) An Improved Flood Susceptibility Assessment in Jeddah, Saudi Arabia, using Advanced Machine Learning techniques. Water (Switzerland) 15(14). https://doi.org/10.3390/w15142511 Ghanim AAJ, Shaf A, Ali T, Zafar M, Al-Areeq AM, Alyami SH, Irfan M, Rahman S (2023) An Improved Flood Susceptibility Assessment in Jeddah, Saudi Arabia, using Advanced Machine Learning techniques. Water (Switzerland) 15(14). https://​doi.​org/​10.​3390/​w15142511
go back to reference Hameed MM, Alomar MK, Khaleel F, Al-Ansari N (2021) An Extra tree regression model for discharge coefficient prediction: Novel, Practical Applications in the Hydraulic Sector and Future Research Directions. Math Probl Eng. https://doi.org/10.1155/2021/7001710 Hameed MM, Alomar MK, Khaleel F, Al-Ansari N (2021) An Extra tree regression model for discharge coefficient prediction: Novel, Practical Applications in the Hydraulic Sector and Future Research Directions. Math Probl Eng. https://​doi.​org/​10.​1155/​2021/​7001710
go back to reference Kim W, Iizumi T, Hosokawa N, … M. T.-E. &, Hosokawa N (2023) undefined. (2023). Flood impacts on global crop production: advances and limitations. Iopscience.Iop.OrgW Kim, T Iizumi, N Hosokawa M Tanoue, Y HirabayashiEnvironmental Research Letters, 2023•iopscience.Iop.Org. https://doi.org/10.1088/1748-9326/accd85 Kim W, Iizumi T, Hosokawa N, … M. T.-E. &, Hosokawa N (2023) undefined. (2023). Flood impacts on global crop production: advances and limitations. Iopscience.Iop.OrgW Kim, T Iizumi, N Hosokawa M Tanoue, Y HirabayashiEnvironmental Research Letters, 2023•iopscience.Iop.Org. https://​doi.​org/​10.​1088/​1748-9326/​accd85
go back to reference Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021a) Uavs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustain (Switzerland) 13(14). https://doi.org/10.3390/su13147547 Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021a) Uavs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustain (Switzerland) 13(14). https://​doi.​org/​10.​3390/​su13147547
go back to reference Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021b) Uavs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustain (Switzerland) 13(14). https://doi.org/10.3390/su13147547 Munawar HS, Ullah F, Qayyum S, Khan SI, Mojtahedi M (2021b) Uavs in disaster management: application of integrated aerial imagery and convolutional neural network for flood detection. Sustain (Switzerland) 13(14). https://​doi.​org/​10.​3390/​su13147547
go back to reference Musarat MA, Alaloul WS, Rabbani MBA, Ali M, Altaf M, Fediuk R, Vatin N, Klyuev S, Bukhari H, Sadiq A, Rafiq W, Farooq W (2021) Kabul River Flow Prediction using automated ARIMA forecasting: a Machine Learning Approach. Sustain 2021 13(19):10720. https://doi.org/10.3390/SU131910720. 13CrossRef Musarat MA, Alaloul WS, Rabbani MBA, Ali M, Altaf M, Fediuk R, Vatin N, Klyuev S, Bukhari H, Sadiq A, Rafiq W, Farooq W (2021) Kabul River Flow Prediction using automated ARIMA forecasting: a Machine Learning Approach. Sustain 2021 13(19):10720. https://​doi.​org/​10.​3390/​SU131910720. 13CrossRef
go back to reference Noor F, Haq S, Rakib M, Ahmed T, Jamal Z, Siam ZS, Hasan RT, Adnan MSG, Dewan A, Rahman RM (2022) Water Level forecasting using Spatiotemporal attention-based long short-term Memory Network. Water (Switzerland) 14(4). https://doi.org/10.3390/w14040612 Noor F, Haq S, Rakib M, Ahmed T, Jamal Z, Siam ZS, Hasan RT, Adnan MSG, Dewan A, Rahman RM (2022) Water Level forecasting using Spatiotemporal attention-based long short-term Memory Network. Water (Switzerland) 14(4). https://​doi.​org/​10.​3390/​w14040612
go back to reference Park K, Jung Y, Seong Y, Lee S (2022) Development of deep learning models to improve the accuracy of water levels time series prediction through multivariate hydrological data. Water, 14(3), 469. Park K, Jung Y, Seong Y, Lee S (2022) Development of deep learning models to improve the accuracy of water levels time series prediction through multivariate hydrological data. Water, 14(3), 469.
go back to reference Rahman T, Syeed MMA, Farzana M, Namir I, Ishrar I, Nushra MH, & Khan BM (2023) Flood prediction using ensemble machine learning model. In 2023 5th International congress on human-computer interaction, Optimization and Robotic Applications (HORA) (pp. 1–6). IEEE. Rahman T, Syeed MMA, Farzana M, Namir I, Ishrar I, Nushra MH, & Khan BM (2023) Flood prediction using ensemble machine learning model. In 2023 5th International congress on human-computer interaction, Optimization and Robotic Applications (HORA) (pp. 1–6). IEEE.
go back to reference Ruidas D, Chakrabortty R, Abu ·, Islam RMT, Saha A, Subodh, Pal C (2022) A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environmental Earth Sciences, 81, 145. https://doi.org/10.1007/s12665-022-10269-0 Ruidas D, Chakrabortty R, Abu ·, Islam RMT, Saha A, Subodh, Pal C (2022) A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environmental Earth Sciences, 81, 145. https://​doi.​org/​10.​1007/​s12665-022-10269-0
go back to reference Siam ZS, Hasan RT, Anik SS, Noor F, Adnan MSG, Rahman RM (2021) Study of hybridized support Vector Regression Based Flood susceptibility mapping for Bangladesh. Lecture notes in Computer Science (including subseries lecture notes in Artificial Intelligence and Lecture notes in Bioinformatics): Vol. 12799 LNAI. Springer Science and Business Media Deutschland GmbH, pp 59–71. https://doi.org/10.1007/978-3-030-79463-7_6 Siam ZS, Hasan RT, Anik SS, Noor F, Adnan MSG, Rahman RM (2021) Study of hybridized support Vector Regression Based Flood susceptibility mapping for Bangladesh. Lecture notes in Computer Science (including subseries lecture notes in Artificial Intelligence and Lecture notes in Bioinformatics): Vol. 12799 LNAI. Springer Science and Business Media Deutschland GmbH, pp 59–71. https://​doi.​org/​10.​1007/​978-3-030-79463-7_​6
go back to reference Tu Jv (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. In J CLIN EPIDEMIOL 49(11). Tu Jv (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. In J CLIN EPIDEMIOL 49(11).
go back to reference Xu C, Wang Y, Fu H, Yang J (2022) Comprehensive analysis for long-term hydrological simulation by deep learning techniques and remote sensing. Front earth sci, 10, 875145. Xu C, Wang Y, Fu H, Yang J (2022) Comprehensive analysis for long-term hydrological simulation by deep learning techniques and remote sensing. Front earth sci, 10, 875145.
go back to reference Yang T, Silver DL (2021) The disadvantage of CNN versus DBN image classification under adversarial conditions. Yang T, Silver DL (2021) The disadvantage of CNN versus DBN image classification under adversarial conditions.
Metadata
Title
Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review
Authors
Adisa Hammed Akinsoji
Bashir Adelodun
Qudus Adeyi
Rahmon Abiodun Salau
Golden Odey
Kyung Sook Choi
Publication date
03-06-2024
Publisher
Springer Netherlands
Published in
Water Resources Management / Issue 12/2024
Print ISSN: 0920-4741
Electronic ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-024-03885-x