Skip to main content
Top

2018 | OriginalPaper | Chapter

Integration of Nanostructured Thermoelectric Materials in Micro Power Generators

Authors : D. Dávila, A. Tarancón, L. Fonseca

Published in: Commercialization of Nanotechnologies–A Case Study Approach

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The demand for portable power generation required by miniaturized systems with long-lasting autonomous operation is large and expanding. In order to fulfill this demand, high-energy density storage and generation devices are required. Currently, batteries and micro fuel cells represent the technologies available for this purpose. However, true energy autonomy would eventually be better enabled by energy harvesting devices, either by themselves or in combination with storage devices (batteries or capacitors). In this respect, thermoelectric generators may lead to a quite enabling energy autonomy solution in those particular application scenarios in which waste heat or hot surface are available. This chapter serves as a brief introduction to the general principles of thermoelectricity and the state-of-the-art of thermoelectric materials. An overview of the different efforts performed by the research community to develop thermoelectric devices and the implementation approaches followed to fabricate thermoelectric microgenerators based on nanostructured materials is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRef Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320CrossRef
go back to reference Boor J, Kim D, Ao X, Becker M, Hinsche N, Mertig I, Zahn P, Schmidt V (2012) Thermoelectric properties of porous silicon. Appl Phys A 107:789–794CrossRef Boor J, Kim D, Ao X, Becker M, Hinsche N, Mertig I, Zahn P, Schmidt V (2012) Thermoelectric properties of porous silicon. Appl Phys A 107:789–794CrossRef
go back to reference Böttner H, Nurnus J, Gavrikov A, Kühner G, Jägle M, Künzel C, Eberhard D, Plescher G, Schubert A, Schlereth K-H (2004) New thermoelectric components using microsystem technologies. J Microelectromech Syst 13(3):414–420CrossRef Böttner H, Nurnus J, Gavrikov A, Kühner G, Jägle M, Künzel C, Eberhard D, Plescher G, Schubert A, Schlereth K-H (2004) New thermoelectric components using microsystem technologies. J Microelectromech Syst 13(3):414–420CrossRef
go back to reference Böttner H, Nurnus J, Schubert A, Volkert F (2007) New high density micro structured thermogenerators for stand alone sensor systems. In: 26th international conference on thermoelectrics. IEEE, pp 306–309 Böttner H, Nurnus J, Schubert A, Volkert F (2007) New high density micro structured thermogenerators for stand alone sensor systems. In: 26th international conference on thermoelectrics. IEEE, pp 306–309
go back to reference Boukai A, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard W, Heath J (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–71CrossRef Boukai A, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard W, Heath J (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–71CrossRef
go back to reference Bux S, Blair R, Gogna P, Lee H, Chen G, Dresselhaus M, Kaner R, Fleurial J (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Func Mater 19:2445–2452CrossRef Bux S, Blair R, Gogna P, Lee H, Chen G, Dresselhaus M, Kaner R, Fleurial J (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Func Mater 19:2445–2452CrossRef
go back to reference Chen R, Hochbaum A, Murphy P, Moore J, Yang P, Majumdar A (2008) Thermal conductance of thin silicon nanowires. Phys Rev Lett 101(10):1–4CrossRef Chen R, Hochbaum A, Murphy P, Moore J, Yang P, Majumdar A (2008) Thermal conductance of thin silicon nanowires. Phys Rev Lett 101(10):1–4CrossRef
go back to reference Curtin B, Bowers J (2012) Thermoelectric properties of silicon nanowire array and spin-on glass composites fabricated with CMOS-compatible techniques. In MRS proceedings 1408:1–6CrossRef Curtin B, Bowers J (2012) Thermoelectric properties of silicon nanowire array and spin-on glass composites fabricated with CMOS-compatible techniques. In MRS proceedings 1408:1–6CrossRef
go back to reference Curtin B, Fang E, Bowers J (2012) Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices. J Electron Mater Curtin B, Fang E, Bowers J (2012) Highly ordered vertical silicon nanowire array composite thin films for thermoelectric devices. J Electron Mater
go back to reference Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2012) Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy 1:812–819CrossRef Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2012) Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy 1:812–819CrossRef
go back to reference Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2013) Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators. J Electron Mater 42(7):1918–1925CrossRef Dávila D, Tarancón A, Calaza C, Salleras M, Fernández-Regúlez M, San Paulo A, Fonseca L (2013) Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators. J Electron Mater 42(7):1918–1925CrossRef
go back to reference Dávila D, Tarancón A, Fernández-Regúlez M, Calaza C, Salleras M, San Paulo A, Fonseca L (2011a) Silicon nanowire arrays as thermoelectric material for a power microgenerator. J Micromech Microeng 21(10):104007CrossRef Dávila D, Tarancón A, Fernández-Regúlez M, Calaza C, Salleras M, San Paulo A, Fonseca L (2011a) Silicon nanowire arrays as thermoelectric material for a power microgenerator. J Micromech Microeng 21(10):104007CrossRef
go back to reference Dávila D, Tarancón A, Kendig D, Fernández-Regúlez M, Sabaté N, Salleras M, Calaza C, Cané C, Gràcia I, Figueras E, Santander J, San Paulo A, Shakouri A, Fonseca L (2011b) Planar thermoelectric microgenerators based on silicon nanowires. J Electron Mater 40(5):851–855CrossRef Dávila D, Tarancón A, Kendig D, Fernández-Regúlez M, Sabaté N, Salleras M, Calaza C, Cané C, Gràcia I, Figueras E, Santander J, San Paulo A, Shakouri A, Fonseca L (2011b) Planar thermoelectric microgenerators based on silicon nanowires. J Electron Mater 40(5):851–855CrossRef
go back to reference Dresselhaus M, Chen G, Tang M, Yang R, Lee H, Wang D, Ren Z, Fleurial J, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053CrossRef Dresselhaus M, Chen G, Tang M, Yang R, Lee H, Wang D, Ren Z, Fleurial J, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053CrossRef
go back to reference Ebling D (2009) Thermoelectrics for high temperatures—a survey of state of the art. In: Energy harvesting workshop Ebling D (2009) Thermoelectrics for high temperatures—a survey of state of the art. In: Energy harvesting workshop
go back to reference Esfarjani K, Chen G, Stokes H (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84(8):085204CrossRef Esfarjani K, Chen G, Stokes H (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84(8):085204CrossRef
go back to reference Feser J, Sadhu J, Azeredo B, Hsu K, Ma J, Kim J, Seong M, Fang N, Li X, Ferreira P, Sinha S, Cahill D (2012) Thermal conductivity of silicon nanowire arrays with controlled roughness. J Appl Phys 112(11):114306CrossRef Feser J, Sadhu J, Azeredo B, Hsu K, Ma J, Kim J, Seong M, Fang N, Li X, Ferreira P, Sinha S, Cahill D (2012) Thermal conductivity of silicon nanowire arrays with controlled roughness. J Appl Phys 112(11):114306CrossRef
go back to reference Glatz W, Muntwyler S, Hierold C (2006) Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens Actuators A Phys 132(1):337–345CrossRef Glatz W, Muntwyler S, Hierold C (2006) Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens Actuators A Phys 132(1):337–345CrossRef
go back to reference Glatz W, Schwyter E, Durrer L, Hierold C (2009) Bi2Te3-based flexible micro thermoelectric generator with optimized design. J Microelectromech Syst 18(3):763–772CrossRef Glatz W, Schwyter E, Durrer L, Hierold C (2009) Bi2Te3-based flexible micro thermoelectric generator with optimized design. J Microelectromech Syst 18(3):763–772CrossRef
go back to reference Glosch H, Ashauer M, Pfeiffer U, Lang W (1999) A thermoelectric converter for energy supply. Sens Actuators A Phys 74(1–3):246–250CrossRef Glosch H, Ashauer M, Pfeiffer U, Lang W (1999) A thermoelectric converter for energy supply. Sens Actuators A Phys 74(1–3):246–250CrossRef
go back to reference Hasebe S, Ogawa J, Shiozaki M, Toriyama T, Sugiyama S, Ueno H, Itoigawa K (2004) Polymer based smart flexible thermopile for power generation. In: 17th IEEE international conference on micro electro mechanical systems (MEMS), pp 689–692 Hasebe S, Ogawa J, Shiozaki M, Toriyama T, Sugiyama S, Ueno H, Itoigawa K (2004) Polymer based smart flexible thermopile for power generation. In: 17th IEEE international conference on micro electro mechanical systems (MEMS), pp 689–692
go back to reference Hicks L, Dresselhaus M (1993a) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRef Hicks L, Dresselhaus M (1993a) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRef
go back to reference Hicks L, Dresselhaus M (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634CrossRef Hicks L, Dresselhaus M (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634CrossRef
go back to reference Hochbaum A, Chen R, Delgado R, Liang W, Garnett E, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRef Hochbaum A, Chen R, Delgado R, Liang W, Garnett E, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRef
go back to reference Huang Y, Duan X, Cui Y, Lauhon L, Kim K, Lieber C (2001) Logic gates and computation from assembled nanowire building blocks. Science 294 (November):1313–1317 Huang Y, Duan X, Cui Y, Lauhon L, Kim K, Lieber C (2001) Logic gates and computation from assembled nanowire building blocks. Science 294 (November):1313–1317
go back to reference Huesgen T, Woias P, Kockmann N (2008) Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens Actuators A Phys 145–146:423–429CrossRef Huesgen T, Woias P, Kockmann N (2008) Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sens Actuators A Phys 145–146:423–429CrossRef
go back to reference Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S (2005) Fabrication of flexible thermopile generator. J Micromech Microeng 15(9):S233–S238CrossRef Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S (2005) Fabrication of flexible thermopile generator. J Micromech Microeng 15(9):S233–S238CrossRef
go back to reference Iyengar A (2010) Synthesis and characterization of micro/nano material for thermoelectric applications. PhD thesis, Case Western Reserve University Iyengar A (2010) Synthesis and characterization of micro/nano material for thermoelectric applications. PhD thesis, Case Western Reserve University
go back to reference Leonov V, Van Hoof C, Vullers R (2009) Thermoelectric and hybrid generators in wearable devices and clothes. In: IEEE (ed) Sixth international workshop on wearable and implantable body sensor networks, 2009. BSN 2009. IEEE, pp 195–200 Leonov V, Van Hoof C, Vullers R (2009) Thermoelectric and hybrid generators in wearable devices and clothes. In: IEEE (ed) Sixth international workshop on wearable and implantable body sensor networks, 2009. BSN 2009. IEEE, pp 195–200
go back to reference Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934CrossRef Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934CrossRef
go back to reference Li J-F, Liu W-S, Zhao L-G, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158CrossRef Li J-F, Liu W-S, Zhao L-G, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158CrossRef
go back to reference Li Y, Buddharaju K, Singh N, Lo GQ, Lee SJ (2011) Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Lett 32(5):674–676CrossRef Li Y, Buddharaju K, Singh N, Lo GQ, Lee SJ (2011) Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electron Device Lett 32(5):674–676CrossRef
go back to reference Li Y, Buddharaju K, Singh N, Lee S (2012a) Top-down silicon nanowire-based thermoelectric generator: design and characterization. J Electron Mater 41:989–992CrossRef Li Y, Buddharaju K, Singh N, Lee S (2012a) Top-down silicon nanowire-based thermoelectric generator: design and characterization. J Electron Mater 41:989–992CrossRef
go back to reference Li Y, Buddharaju K, Tinh B, Singh N, Lee S (2012b) Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett 33(5):715–717CrossRef Li Y, Buddharaju K, Tinh B, Singh N, Lee S (2012b) Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett 33(5):715–717CrossRef
go back to reference Lim, J., Snyder G, Huang C-K, Herman J, Ryan M, Fleurial J-P (2002) Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL), pp 535–539 Lim, J., Snyder G, Huang C-K, Herman J, Ryan M, Fleurial J-P (2002) Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL), pp 535–539
go back to reference Lindeberg M, Yousef H, Rödjegård H, Martin H, Hjort K (2008) A PCB-like process for vertically configured thermopiles. J Micromech Microeng 18(6):065021CrossRef Lindeberg M, Yousef H, Rödjegård H, Martin H, Hjort K (2008) A PCB-like process for vertically configured thermopiles. J Micromech Microeng 18(6):065021CrossRef
go back to reference Nolas G, Cohn J, Slack G, Schujman S (1998) Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl Phys Lett 73(2):178CrossRef Nolas G, Cohn J, Slack G, Schujman S (1998) Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl Phys Lett 73(2):178CrossRef
go back to reference Pasold G, Etlin P, Hahn M, Muster U, Nersessian V, Bonfrate D, Buser R, Cucinelli M, Gutsche M, Kehl M, Zäch N, Hazelden R (2011) Powering wireless sensors: microtechnology-based large-area thermoelectric generator for mass applications. Proceedings of IEEE sensors 1:1293–1296 Pasold G, Etlin P, Hahn M, Muster U, Nersessian V, Bonfrate D, Buser R, Cucinelli M, Gutsche M, Kehl M, Zäch N, Hazelden R (2011) Powering wireless sensors: microtechnology-based large-area thermoelectric generator for mass applications. Proceedings of IEEE sensors 1:1293–1296
go back to reference Perez-Marín A, Lopeandía A, Abad L, Ferrando-Villaba P, Garcia G, Lopez A, Muñoz-Pascual F, Rodríguez-Viejo J (2014) Micropower thermoelectric generator from thin Si membranes. Nano Energy 4:73–80CrossRef Perez-Marín A, Lopeandía A, Abad L, Ferrando-Villaba P, Garcia G, Lopez A, Muñoz-Pascual F, Rodríguez-Viejo J (2014) Micropower thermoelectric generator from thin Si membranes. Nano Energy 4:73–80CrossRef
go back to reference Ponomareva I, Srivastava D, Menon M (2007) Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett 7(5):1155–1159CrossRef Ponomareva I, Srivastava D, Menon M (2007) Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett 7(5):1155–1159CrossRef
go back to reference Rowe D (2002) Recent concepts in thermoelectric power generation. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT ’02, pp 365–374 Rowe D (2002) Recent concepts in thermoelectric power generation. In: Twenty-first international conference on thermoelectrics, 2002. Proceedings ICT ’02, pp 365–374
go back to reference Rowe D (2006a) Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power 1(1):13–23MathSciNet Rowe D (2006a) Thermoelectric waste heat recovery as a renewable energy source. Int J Innov Energy Syst Power 1(1):13–23MathSciNet
go back to reference Rowe D (2006b) Thermoelectrics handbook: macro to nano. CRC Press, Taylor & Francis Group Rowe D (2006b) Thermoelectrics handbook: macro to nano. CRC Press, Taylor & Francis Group
go back to reference Rowe D, Min G (1996) Design theory of thermoelectric modules for electrical power generation. IEE Proc Sci Meas Technol 143(6):351–356CrossRef Rowe D, Min G (1996) Design theory of thermoelectric modules for electrical power generation. IEE Proc Sci Meas Technol 143(6):351–356CrossRef
go back to reference Rowe D, Morgan D, Kiely J (1989) Miniature low-power/high-voltage thermoelectric generator. Electron Lett 25(2):166–168 Rowe D, Morgan D, Kiely J (1989) Miniature low-power/high-voltage thermoelectric generator. Electron Lett 25(2):166–168
go back to reference Sales B, Mandrus D, Williams R (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272(5266):1325–1328CrossRef Sales B, Mandrus D, Williams R (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272(5266):1325–1328CrossRef
go back to reference Schierning G (2014) Silicon nanostructures for thermoelectric devices: a review of the current state of the art. Phys Status Solidi (A) 211(6):1235–1249CrossRef Schierning G (2014) Silicon nanostructures for thermoelectric devices: a review of the current state of the art. Phys Status Solidi (A) 211(6):1235–1249CrossRef
go back to reference Schierning G, Theissmann R, Stein N, Petermann N, Becker A, Engenhorst M, Kessler V, Geller M, Beckel A, Wiggers H, Schmechel R (2011) Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J Appl Phys 110(11):113515CrossRef Schierning G, Theissmann R, Stein N, Petermann N, Becker A, Engenhorst M, Kessler V, Geller M, Beckel A, Wiggers H, Schmechel R (2011) Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. J Appl Phys 110(11):113515CrossRef
go back to reference Singh R (2008) Experimental characterization of thin film thermoelectric materials and film deposition via molecular beam epitaxy. PhD thesis, University of California Santa Cruz Singh R (2008) Experimental characterization of thin film thermoelectric materials and film deposition via molecular beam epitaxy. PhD thesis, University of California Santa Cruz
go back to reference Slack G (1995) New materials and performance limits for thermoelectric cooling, Chapter 34. CRC Press, Boca Raton, pp 407–440 Slack G (1995) New materials and performance limits for thermoelectric cooling, Chapter 34. CRC Press, Boca Raton, pp 407–440
go back to reference Slack G, Tsoukala V (1994) Some properties of semiconducting IrSb3. J Appl Phys 76(3):1665CrossRef Slack G, Tsoukala V (1994) Some properties of semiconducting IrSb3. J Appl Phys 76(3):1665CrossRef
go back to reference Snyder G, Lim J, Huang C-K, Fleurial J-P (2003) Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat Mater 2:528–531CrossRef Snyder G, Lim J, Huang C-K, Fleurial J-P (2003) Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat Mater 2:528–531CrossRef
go back to reference Snyder G, Toberer E (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRef Snyder G, Toberer E (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRef
go back to reference Stark I, Stordeur M (1999) New micro thermoelectric devices based on bismuth telluride-type thin solid films. In: Eighteenth international conference on thermoelectrics. Proceedings, ICT’99 (Cat. No. 99TH8407), pp 465–472 Stark I, Stordeur M (1999) New micro thermoelectric devices based on bismuth telluride-type thin solid films. In: Eighteenth international conference on thermoelectrics. Proceedings, ICT’99 (Cat. No. 99TH8407), pp 465–472
go back to reference Stordeur M, Stark I (1997) Low power thermoelectric generator—self-sufficient energy supply for micro systems. In: Proceedings of the 16th international conference on thermoelectrics, pp 575–577 Stordeur M, Stark I (1997) Low power thermoelectric generator—self-sufficient energy supply for micro systems. In: Proceedings of the 16th international conference on thermoelectrics, pp 575–577
go back to reference Stordeur M, Stark I (2003) DTS: thin film thermoelectric generator systems GmbH. In: Proceedings of the 22nd international conference on thermoelectrics, vol 97, p 661 Stordeur M, Stark I (2003) DTS: thin film thermoelectric generator systems GmbH. In: Proceedings of the 22nd international conference on thermoelectrics, vol 97, p 661
go back to reference Stranz A, Kähler J, Merzsch S, Waag A, Peiner E (2012) Nanowire silicon as a material for thermoelectric energy conversion. Microsyst Technol 18:857–862CrossRef Stranz A, Kähler J, Merzsch S, Waag A, Peiner E (2012) Nanowire silicon as a material for thermoelectric energy conversion. Microsyst Technol 18:857–862CrossRef
go back to reference Stranz A, Sökmen Ü, Kähler J, Waag A, Peiner E (2011a) Measurements of thermoelectric properties of silicon pillars. Sens Actuators A Phys 171(1):48–53 Stranz A, Sökmen Ü, Kähler J, Waag A, Peiner E (2011a) Measurements of thermoelectric properties of silicon pillars. Sens Actuators A Phys 171(1):48–53
go back to reference Stranz A, Waag A, Peiner E (2011b) Thermal characterization of vertical silicon nanowires. J Mater Res 26(15):1958–1962CrossRef Stranz A, Waag A, Peiner E (2011b) Thermal characterization of vertical silicon nanowires. J Mater Res 26(15):1958–1962CrossRef
go back to reference Stranz A, Waag A, Peiner E (2013) High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J Electron Mater 42(7):2233–2238CrossRef Stranz A, Waag A, Peiner E (2013) High-temperature performance of stacked silicon nanowires for thermoelectric power generation. J Electron Mater 42(7):2233–2238CrossRef
go back to reference Strasser M, Aigner R, Franosch M, Wachutka G (2002) Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens Actuators A Phys 97–98(1–2):535–542CrossRef Strasser M, Aigner R, Franosch M, Wachutka G (2002) Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens Actuators A Phys 97–98(1–2):535–542CrossRef
go back to reference Strasser M, Aigner R, Lauterbch C, Sturm T, Franosch M, Wachutka G (2003) Micromachined CMOS thermoelectric generators as on-chip power supply. In: TRANSDUCERS ’03. 12th international conference solid-state sensors, actuators microsystems. IEEE Strasser M, Aigner R, Lauterbch C, Sturm T, Franosch M, Wachutka G (2003) Micromachined CMOS thermoelectric generators as on-chip power supply. In: TRANSDUCERS ’03. 12th international conference solid-state sensors, actuators microsystems. IEEE
go back to reference Su J, Leonov V, Goedbloed M, van Andel Y, de Nooijer M, Elfrink R, Wang Z, Vullers R (2010a) A batch process micromachined thermoelectric energy harvester: fabrication and characterization. J Micromech Microeng 20(10):104005CrossRef Su J, Leonov V, Goedbloed M, van Andel Y, de Nooijer M, Elfrink R, Wang Z, Vullers R (2010a) A batch process micromachined thermoelectric energy harvester: fabrication and characterization. J Micromech Microeng 20(10):104005CrossRef
go back to reference Su J, Vullers R, Goedbloed M, van Andel Y, Leonov V, Wang Z (2010b) Thermoelectric energy harvester fabricated by Stepper. Microelectron Eng 87(5–8):1242–1244CrossRef Su J, Vullers R, Goedbloed M, van Andel Y, Leonov V, Wang Z (2010b) Thermoelectric energy harvester fabricated by Stepper. Microelectron Eng 87(5–8):1242–1244CrossRef
go back to reference Tan Y, Panda S (2010) Review of energy harvesting technologies for sustainable wireless sensor network. InTech Tan Y, Panda S (2010) Review of energy harvesting technologies for sustainable wireless sensor network. InTech
go back to reference U.S. Department of Energy (2010) Critical materials strategy, Technical report U.S. Department of Energy (2010) Critical materials strategy, Technical report
go back to reference van Andel Y, Jambunathan M, Vullers R, Leonov V (2010) Membrane-less in-plane bulk-micromachined thermopiles for energy harvesting. Microelectron Eng 87(5–8):1294–1296CrossRef van Andel Y, Jambunathan M, Vullers R, Leonov V (2010) Membrane-less in-plane bulk-micromachined thermopiles for energy harvesting. Microelectron Eng 87(5–8):1294–1296CrossRef
go back to reference Venkatasubramanian R, Watkins C, Caylor C, Bulman G (2006) Microscale thermoelectric devices for energy harvesting and thermal management. In: PowerMEMS 2006. The 6th international workshop on micro and nanotechnology for power generation and energy conversion applications, pp 1–4 Venkatasubramanian R, Watkins C, Caylor C, Bulman G (2006) Microscale thermoelectric devices for energy harvesting and thermal management. In: PowerMEMS 2006. The 6th international workshop on micro and nanotechnology for power generation and energy conversion applications, pp 1–4
go back to reference Vining C (2007) ZT = 3.5: fifteen years of progress and things to come. In: The 5th European conference on thermoelectrics ECT 2007, pp 6–11 Vining C (2007) ZT = 3.5: fifteen years of progress and things to come. In: The 5th European conference on thermoelectrics ECT 2007, pp 6–11
go back to reference Wang W, Jia F, Huang Q, Zhang J (2005) A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron Eng 77(3–4):223–229CrossRef Wang W, Jia F, Huang Q, Zhang J (2005) A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron Eng 77(3–4):223–229CrossRef
go back to reference Wang X (2012) Piezoelectric nanogenerators–harvesting ambient mechanical energy at the nanometer scale. Nano Energ 1(1):13–24CrossRef Wang X (2012) Piezoelectric nanogenerators–harvesting ambient mechanical energy at the nanometer scale. Nano Energ 1(1):13–24CrossRef
go back to reference Wang X, Song J, Liu J, Wang Z (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–106CrossRef Wang X, Song J, Liu J, Wang Z (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–106CrossRef
go back to reference Weber L, Gmelin E (1991) Transport properties of silicon. Appl Phys A 140:136–140CrossRef Weber L, Gmelin E (1991) Transport properties of silicon. Appl Phys A 140:136–140CrossRef
go back to reference Whalen S, Apblett C, Aselage T (2008) Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J Power Sources 180:657–663CrossRef Whalen S, Apblett C, Aselage T (2008) Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J Power Sources 180:657–663CrossRef
go back to reference Winder E, Ellis A, Lisensky G (1996) Thermoelectric devices: solid-state refrigerators and electrical generators in the classroom. J Chem Educ 73(10):940CrossRef Winder E, Ellis A, Lisensky G (1996) Thermoelectric devices: solid-state refrigerators and electrical generators in the classroom. J Chem Educ 73(10):940CrossRef
go back to reference Xie J, Lee C, Feng H (2010) Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324CrossRef Xie J, Lee C, Feng H (2010) Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J Microelectromech Syst 19(2):317–324CrossRef
go back to reference Yang J, Chen Y, Peng J, Song X, Zhu W, Su J, Chen R (2004) Synthesis of CoSb3 skutterudite by mechanical alloying. J Alloys Compd 375(1–2):229–232CrossRef Yang J, Chen Y, Peng J, Song X, Zhu W, Su J, Chen R (2004) Synthesis of CoSb3 skutterudite by mechanical alloying. J Alloys Compd 375(1–2):229–232CrossRef
go back to reference Yu J-K, Mitrovic S, Tham D, Varghese J, Heath J (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718–721CrossRef Yu J-K, Mitrovic S, Tham D, Varghese J, Heath J (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718–721CrossRef
go back to reference Yu L, Roca i Cabarrocas P, (2010) Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Phys Rev B 81(8):1–11 Yu L, Roca i Cabarrocas P, (2010) Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires. Phys Rev B 81(8):1–11
Metadata
Title
Integration of Nanostructured Thermoelectric Materials in Micro Power Generators
Authors
D. Dávila
A. Tarancón
L. Fonseca
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-56979-6_4