Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

10-03-2020 | Research Article-Computer Engineering and Computer Science | Issue 8/2020

Arabian Journal for Science and Engineering 8/2020

Intelligent Analysis of Arabic Tweets for Detection of Suspicious Messages

Journal:
Arabian Journal for Science and Engineering > Issue 8/2020
Authors:
Mohammed A. AlGhamdi, Murtaza Ali Khan

Abstract

With the widespread use of messaging via social networks such as Twitter, Instagram, and Facebook, it is becoming imperative for researchers to devise intelligent systems for data analytics in the range of domains like business, health, communication, security, etc. The complex morphological and syntactic structure of Arabic sentences makes them difficult to analyze. This paper presents an intelligent system to analyze Arabic tweets for detecting suspicious messages. We acquired Arabic tweet data from micro-blogging social network Twitter via Twitter Streaming Application Programming Interface and save it in a required file format. The system tokenizes and preprocesses the tweet dataset. Manual labeling is performed on tweet dataset for suspicious (label 1) and not-suspicious (label 0) classes. The labeled tweet dataset is used to train a classifier using supervised machine learning algorithms for the detection of suspicious activities. During the testing phase, the system processes unlabeled tweet data and detects either it belongs to a suspicious or not-suspicious class. We tested the system using six supervised machine learning algorithms: (1) decision tree, (2) k-nearest neighbors, (3) linear discriminant algorithm, (4) support vector machine, (5) artificial neural networks, and (6) long short-term memory networks. A comparative analysis in terms of accuracy, execution time, and confusion matrices of the six classifiers is presented. The execution speed of ANN is lowest. In terms of predicting correct results, the SVM performs best among all the classifiers and yields 86.72% mean accuracy. The major outcomes of this work are development of labeled dataset of Arabic tweets, an intelligent behavior analysis of tweets using six machine learning algorithms to detect suspicious messages, a comparative analysis of six machine learning algorithms, and a development of a statistical benchmark that can be used for future studies about the detection of crimes on social media.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Arabian Journal for Science and Engineering 8/2020 Go to the issue

Research Article-Computer Engineering and Computer Science

Logically Optimal Novel 4:2 Compressor Architectures for High-Performance Applications

Research Article-Computer Engineering and Computer Science

A Blockchain-Based Solution to Control Power Losses in Pakistan

Premium Partners

    Image Credits