Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-11-2018 | Methodologies and Application | Issue 21/2019

Soft Computing 21/2019

Intelligent hepatitis diagnosis using adaptive neuro-fuzzy inference system and information gain method

Journal:
Soft Computing > Issue 21/2019
Authors:
Waheed Ahmad, Ayaz Ahmad, Amjad Iqbal, Muhammad Hamayun, Anwar Hussain, Gauhar Rehman, Salman Khan, Ubaid Ullah Khan, Dawar Khan, Lican Huang
Important notes
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Hepatitis, a common liver inflammation, is one of the major public health issues around the world. Proper interpretation of clinical data for the diagnosis of hepatitis is an important problem that needs to be addressed. In this study, a hybrid intelligent approach, combining information gain method and adaptive neuro-fuzzy inference system (ANFIS), is proposed for the diagnosis of fatal hepatitis disorder. Initially, the hepatitis dataset obtained from the University of California Irvine machine learning repository is preprocessed to make it suitable for the mining process. After the preprocessing stage, information gain method is applied to condense the number of features in order to decrease computation time and classification complexity. Selected features are then fed into the ANFIS classifier system. The performance of the proposed approach was evaluated using statistical methods, and the highest results for the classification accuracy, specificity, and sensitivity analysis of the proposed system reached were 95.24%, 91.7%, and 96.17%, respectively. The obtained results show that the proposed intelligent system has a good diagnosis performance and can be applied as a promising tool for the diagnosis of hepatitis.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 21/2019

Soft Computing 21/2019 Go to the issue

Premium Partner

    Image Credits