Skip to main content
Top
Published in:

01-12-2023 | Original Article

Intelligent lead-based bidirectional long short term memory for COVID-19 sentiment analysis

Authors: Santoshi Kumari, T. P. Pushphavathi

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social media is an online platform with millions of users and is utilized to spread news, information, world events, discuss ideas, etc. During the COVID-19 pandemic, information and ideas are shared by users both officially and by citizens. Here, the detection of useful content from social media is a challenging task. Hence, natural language processing (NLP) and deep learning are widely utilized for the analysis of the emotions of people during the COVID-19 pandemic. Hence, this research introduces a deep learning mechanism for identifying the sentiment of the people by considering the online Twitter data regarding COVID-19. The intelligent lead-based BiLSTM is utilized to analyze people's sentiments. Here, the loss of the classifier while learning the data is eliminated through the incorporation of the intelligent lead optimization. Hence, the loss is reduced, and a more accurate analysis is obtained. The intelligent lead optimization is devised by considering the role of the informer in identifying the enemy base to safeguard the territory from attack along with the Monarch's knowledge. The performance of the intelligent lead-based BiLSTM for the sentiment analysis is assessed using the metrics like accuracy, sensitivity, and specificity and obtained the values of 96.11, 99.22, and 95.35%, respectively, which are 14.24, 10.45, and 26.57% enhanced performance compared to the baseline KNN technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akçay MT (2020) Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm. Sak Univ J Comp Inf Sci 3(3):355–365 Akçay MT (2020) Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm. Sak Univ J Comp Inf Sci 3(3):355–365
go back to reference Basiri ME, Nemati S, Abdar M, Asadi S, Acharrya UR (2021) A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets. Knowl Based Syst 228:107242CrossRef Basiri ME, Nemati S, Abdar M, Asadi S, Acharrya UR (2021) A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets. Knowl Based Syst 228:107242CrossRef
go back to reference Binu D, Kariyappa BS (2020) Rider-deep-LSTM network for hybrid distance score-based fault prediction in analog circuits. IEEE Trans Ind Electron 68(10):10097–10106CrossRef Binu D, Kariyappa BS (2020) Rider-deep-LSTM network for hybrid distance score-based fault prediction in analog circuits. IEEE Trans Ind Electron 68(10):10097–10106CrossRef
go back to reference Chole V, Gadicha V (2020) A review towards human intuition based chess playing system using AI & ML. Turk J Comput Math Educ (TURCOMAT) 11(2):792–797 Chole V, Gadicha V (2020) A review towards human intuition based chess playing system using AI & ML. Turk J Comput Math Educ (TURCOMAT) 11(2):792–797
go back to reference Choudrie J, Patil S, Kotecha K, Matta N, Pappas I (2021) Applying and understanding an advanced, novel deep learning approach: a Covid 19, text based, emotions analysis study. Inf Syst Front 23(6):1431–1465CrossRef Choudrie J, Patil S, Kotecha K, Matta N, Pappas I (2021) Applying and understanding an advanced, novel deep learning approach: a Covid 19, text based, emotions analysis study. Inf Syst Front 23(6):1431–1465CrossRef
go back to reference Chowdhury AA, Das A, Saha SK, Rahman M, and Hasan KT (2021) Sentiment analysis of COVID-19 vaccination from survey responses in Bangladesh Chowdhury AA, Das A, Saha SK, Rahman M, and Hasan KT (2021) Sentiment analysis of COVID-19 vaccination from survey responses in Bangladesh
go back to reference Elgeldawi E, Sayed A, Galal AR, Zaki AM (2021) Hyperparameter tuning for machine learning algorithms used for Arabic sentiment analysis. Informatics 8(4):79CrossRef Elgeldawi E, Sayed A, Galal AR, Zaki AM (2021) Hyperparameter tuning for machine learning algorithms used for Arabic sentiment analysis. Informatics 8(4):79CrossRef
go back to reference Garcia K, Berton L (2021) Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Appl Soft Comput 101:107057CrossRef Garcia K, Berton L (2021) Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Appl Soft Comput 101:107057CrossRef
go back to reference Hitesh MSR, Vaibhav V, Kalki YA, Kamtam SH, Kumari S (2019) Real-time sentiment analysis of 2019 election tweets using word2vec and random forest model. In: 2019 2nd international conference on intelligent communication and computational techniques (ICCT), pp 146–151. IEEE Hitesh MSR, Vaibhav V, Kalki YA, Kamtam SH, Kumari S (2019) Real-time sentiment analysis of 2019 election tweets using word2vec and random forest model. In: 2019 2nd international conference on intelligent communication and computational techniques (ICCT), pp 146–151. IEEE
go back to reference Kaur H, Ahsaan SU, Alankar B, Chang V (2021) A proposed sentiment analysis deep learning algorithm for analyzing COVID-19 tweets. Inf Syst Front 23(6):1417–1429CrossRef Kaur H, Ahsaan SU, Alankar B, Chang V (2021) A proposed sentiment analysis deep learning algorithm for analyzing COVID-19 tweets. Inf Syst Front 23(6):1417–1429CrossRef
go back to reference Kumari S, Ranjith E, Gujjar A, Narasimman S, Zeelani HAS (2021) Comparative analysis of deep learning models for COVID-19 detection. Global Trans Proc 2(2):559–565CrossRef Kumari S, Ranjith E, Gujjar A, Narasimman S, Zeelani HAS (2021) Comparative analysis of deep learning models for COVID-19 detection. Global Trans Proc 2(2):559–565CrossRef
go back to reference Li X, Li Z, Tian Y (2021) Sentimental knowledge graph analysis of the COVID-19 pandemic based on the official account of Chinese universities. Electronics 10(23):2921CrossRef Li X, Li Z, Tian Y (2021) Sentimental knowledge graph analysis of the COVID-19 pandemic based on the official account of Chinese universities. Electronics 10(23):2921CrossRef
go back to reference Monish P, Kumari S, Babu CN (2018) Automated topic modeling and sentiment analysis of tweets on SparkR. In: 2018 9th international conference on computing, communication and networking technologies (ICCCNT), pp 1–7. IEEE Monish P, Kumari S, Babu CN (2018) Automated topic modeling and sentiment analysis of tweets on SparkR. In: 2018 9th international conference on computing, communication and networking technologies (ICCCNT), pp 1–7. IEEE
go back to reference Neogi AS, Garg KA, Mishra RK, Dwivedi YK (2021) Sentiment analysis and classification of Indian farmers’ protest using twitter data. Int J Inf Manag Data Insights 1(2):100019 Neogi AS, Garg KA, Mishra RK, Dwivedi YK (2021) Sentiment analysis and classification of Indian farmers’ protest using twitter data. Int J Inf Manag Data Insights 1(2):100019
go back to reference Pambudi D, Kawamura M (2022) Novel metaheuristic: spy algorithm. IEICE Trans Inf Syst 105(2):309–319CrossRef Pambudi D, Kawamura M (2022) Novel metaheuristic: spy algorithm. IEICE Trans Inf Syst 105(2):309–319CrossRef
go back to reference Saifullah S, Fauziah Y, and Aribowo AS (2021) Comparison of machine learning for sentiment analysis in detecting anxiety based on social media data. arXiv preprint arXiv:2101.06353 Saifullah S, Fauziah Y, and Aribowo AS (2021) Comparison of machine learning for sentiment analysis in detecting anxiety based on social media data. arXiv preprint arXiv:​2101.​06353
go back to reference Shamrat FMJM, Chakraborty S, Imran MM, Muna JN, Billah MM, Das P, Rahman OM (2021) Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm. Indones J Electr Eng Comput Sci 23(1):463–470 Shamrat FMJM, Chakraborty S, Imran MM, Muna JN, Billah MM, Das P, Rahman OM (2021) Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm. Indones J Electr Eng Comput Sci 23(1):463–470
go back to reference Sitaula C, Basnet A, Mainali A, Shahi TB (2021) Deep learning-based methods for sentiment analysis on Nepali COVID-19-related tweets. Comput Intell Neurosci 2021:1–11CrossRef Sitaula C, Basnet A, Mainali A, Shahi TB (2021) Deep learning-based methods for sentiment analysis on Nepali COVID-19-related tweets. Comput Intell Neurosci 2021:1–11CrossRef
go back to reference Sontayasara T, Jariyapongpaiboon S, Promjun A, Seelpipat N, Saengtabtim K, Tang J, Leelawat N (2021) Twitter sentiment analysis of Bangkok tourism during COVID-19 pandemic using support vector machine algorithm. J Disaster Res 16(1):24–30CrossRef Sontayasara T, Jariyapongpaiboon S, Promjun A, Seelpipat N, Saengtabtim K, Tang J, Leelawat N (2021) Twitter sentiment analysis of Bangkok tourism during COVID-19 pandemic using support vector machine algorithm. J Disaster Res 16(1):24–30CrossRef
go back to reference Soradi-Zeid S, Jahanshahi H, Yousefpour A, Bekiros S (2020) King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. Chaos Solitons Fractals 132:109569MathSciNetCrossRef Soradi-Zeid S, Jahanshahi H, Yousefpour A, Bekiros S (2020) King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. Chaos Solitons Fractals 132:109569MathSciNetCrossRef
go back to reference Wang Y, Huang M, Zhu X, and Zhao L (2016) Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on empirical methods in natural language processing, pp 606–615 Wang Y, Huang M, Zhu X, and Zhao L (2016) Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on empirical methods in natural language processing, pp 606–615
go back to reference Wang D, Liu P, Zheng Y, Qiu X, and Huang X (2020) Heterogeneous graph neural networks for extractive document summarization. arXiv preprint arXiv:2004.12393 Wang D, Liu P, Zheng Y, Qiu X, and Huang X (2020) Heterogeneous graph neural networks for extractive document summarization. arXiv preprint arXiv:​2004.​12393
Metadata
Title
Intelligent lead-based bidirectional long short term memory for COVID-19 sentiment analysis
Authors
Santoshi Kumari
T. P. Pushphavathi
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-01005-4

Premium Partner