Skip to main content
Top
Published in:

2021 | OriginalPaper | Chapter

1. Intelligent Learning and Verification of Biological Networks

Authors : Helen Richards, Yunge Wang, Tong Si, Hao Zhang, Haijun Gong

Published in: Advances in Artificial Intelligence, Computation, and Data Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning and model checking are two types of intelligent computing techniques that have been widely used to study different complicated systems nowadays. It is well-known that the cellular functions and biological processes are strictly regulated by different biological networks, for example, signaling pathways and gene regulatory networks. The pathogenesis of cancers is associated with the dysfunctions of some regulatory networks or signaling pathways. A comprehensive understanding of the biological networks could identify cellular signatures and uncover hidden pathological mechanisms, and help develop targeted therapies for cancers and other diseases. In order to correctly reconstruct biological networks, statisticians and computer scientists have been motivated to develop many intelligent methods, but it is still a challenging task due to the complexity of the biological system and the curse of dimensionality of the high-dimensional biological data. In this work, we will review different machine learning algorithms and formal verification (model checking) techniques that have been proposed and applied in our previous work and discuss how to integrate these computational methods together to intelligently infer and verify complex biological networks from biological data. The advantages and disadvantages of these methods are also discussed in this work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19 Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19
3.
go back to reference Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16:727–734 Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16:727–734
4.
go back to reference Arbeitman M, Furlong E, Imam F, Johnson E et al (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297:2270–5 Arbeitman M, Furlong E, Imam F, Johnson E et al (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297:2270–5
5.
go back to reference Barry D, Hartigan J (1992) Product partition models for change point problems. Ann Stat 20(1):260–279CrossRef Barry D, Hartigan J (1992) Product partition models for change point problems. Ann Stat 20(1):260–279CrossRef
6.
go back to reference Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Tran Comput 35(8):677–691CrossRef Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Tran Comput 35(8):677–691CrossRef
7.
go back to reference Ceccarelli M, Cerulo L, Santone A (2014) De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods 69(3):298–305CrossRefPubMed Ceccarelli M, Cerulo L, Santone A (2014) De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods. Methods 69(3):298–305CrossRefPubMed
8.
go back to reference Chow C, Liu C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Info Theory 14 Chow C, Liu C (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans Info Theory 14
9.
go back to reference Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press
10.
go back to reference Darling D, Erdos P (1956) A limit theorem for the maximum of normalized sums of independent random variables. Duke Math J 23:143–155CrossRef Darling D, Erdos P (1956) A limit theorem for the maximum of normalized sums of independent random variables. Duke Math J 23:143–155CrossRef
11.
go back to reference Doering T et al (2012) Network analysis reveals centrally connected genes and pathways involved in cd8+ t cell exhaustion versus memory. Immunity 37 Doering T et al (2012) Network analysis reveals centrally connected genes and pathways involved in cd8+ t cell exhaustion versus memory. Immunity 37
12.
go back to reference Dondelinger F, Lebre S, Husmeier D (2013) Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90 Dondelinger F, Lebre S, Husmeier D (2013) Non-homogeneous dynamic bayesian networks with bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90
13.
go back to reference Fearnhead P (2006) Exact and efficient Bayesian inference for multiple change point problems. Stat Comput 16(2):203–213CrossRef Fearnhead P (2006) Exact and efficient Bayesian inference for multiple change point problems. Stat Comput 16(2):203–213CrossRef
14.
go back to reference Feuz K, Cook D, Rosasco C, Robertson K, Schmitter-Edgecombe M (2014) Automated detection of activity transitions for prompting. IEEE Trans Human-Mach Syst 45(5):1–11 Feuz K, Cook D, Rosasco C, Robertson K, Schmitter-Edgecombe M (2014) Automated detection of activity transitions for prompting. IEEE Trans Human-Mach Syst 45(5):1–11
15.
go back to reference Friedman J, Hastie T, Tibshirani R (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, pp 1–10 Friedman J, Hastie T, Tibshirani R (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, pp 1–10
16.
go back to reference Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bn to analyze expression data. J Comput Biol 7:601–620CrossRefPubMed Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bn to analyze expression data. J Comput Biol 7:601–620CrossRefPubMed
17.
go back to reference Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th conference on the uncertainty in artificial intelligence Friedman N, Murphy K, Russell S (1998) Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th conference on the uncertainty in artificial intelligence
18.
go back to reference Fujita A, Sato J et al (2007) Time varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 23(13):1623–1630CrossRefPubMed Fujita A, Sato J et al (2007) Time varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 23(13):1623–1630CrossRefPubMed
19.
go back to reference Gong H (2013) Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst Biol 7:S5 Gong H (2013) Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst Biol 7:S5
20.
go back to reference Gong H, Feng L (2014) Computational analysis of the roles of er-golgi network in the cell cycle. BMC Syst Biol 8:S4 Gong H, Feng L (2014) Computational analysis of the roles of er-golgi network in the cell cycle. BMC Syst Biol 8:S4
21.
go back to reference Gong H, Feng L (2014) Probabilistic verification of er stress-induced signaling pathways. In: Proceedings of IEEE international conference on bioinformatics and biomedicine Gong H, Feng L (2014) Probabilistic verification of er stress-induced signaling pathways. In: Proceedings of IEEE international conference on bioinformatics and biomedicine
22.
go back to reference Gong H, Klinger J, Damazyn K, Li X, Huang S (2015) A novel procedure for statistical inference and verification of gene regulatory subnetwork. BMC Bioinform V16:S7 Gong H, Klinger J, Damazyn K, Li X, Huang S (2015) A novel procedure for statistical inference and verification of gene regulatory subnetwork. BMC Bioinform V16:S7
23.
go back to reference Gong H, Wang Q, Zuliani P, Clarke E (2011) Formal analysis for logical models of pancreatic cancer. In: 50th IEEE conference on decision and control and European control conference Gong H, Wang Q, Zuliani P, Clarke E (2011) Formal analysis for logical models of pancreatic cancer. In: 50th IEEE conference on decision and control and European control conference
24.
go back to reference Gong H, Zuliani P, Komuravelli A, Faeder J, Clarke E (2012) Computational modeling and verification of signaling pathways in cancer. Proceedings of algebraic and numeric biology, LNCS 6479 Gong H, Zuliani P, Komuravelli A, Faeder J, Clarke E (2012) Computational modeling and verification of signaling pathways in cancer. Proceedings of algebraic and numeric biology, LNCS 6479
25.
go back to reference Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM (2010) Analysis and verification of the HMGB1 signaling pathway. BMC Bioinform 11(7) Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM (2010) Analysis and verification of the HMGB1 signaling pathway. BMC Bioinform 11(7)
26.
go back to reference Green P (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732CrossRef Green P (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82:711–732CrossRef
27.
go back to reference Grzegorczyk M, Husmeier D (2009) Nonstationary continuous dynamic bayesian networks. Adv Neural Inf Process Syst (NIPS) 22:682–690 Grzegorczyk M, Husmeier D (2009) Nonstationary continuous dynamic bayesian networks. Adv Neural Inf Process Syst (NIPS) 22:682–690
28.
go back to reference Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3) Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3)
30.
go back to reference Kawahara Y, Sugiyama M (2009) Sequential change-point detection based on direct density-ratio estimation. In: SIAM international conference on data mining, pp 389–400 Kawahara Y, Sugiyama M (2009) Sequential change-point detection based on direct density-ratio estimation. In: SIAM international conference on data mining, pp 389–400
31.
go back to reference Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic bayesian networks. Brief Bioinform 4:228–235CrossRefPubMed Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic bayesian networks. Brief Bioinform 4:228–235CrossRefPubMed
32.
go back to reference Kim S, Imoto S, Miyano S (2004) Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems 75:57–65CrossRefPubMed Kim S, Imoto S, Miyano S (2004) Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems 75:57–65CrossRefPubMed
33.
go back to reference Lebre S, Becq J, Devaux F, Stumpf M, Lelandais G (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130CrossRefPubMedPubMedCentral Lebre S, Becq J, Devaux F, Stumpf M, Lelandais G (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130CrossRefPubMedPubMedCentral
34.
go back to reference Luscombe N et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312CrossRefPubMed Luscombe N et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312CrossRefPubMed
35.
go back to reference Ma Y, Damazyn K, Klinger J, Gong H (2015) Inference and verification of probabilistic graphical models from high-dimensional data. Lect Notes Bioinform 9162 Ma Y, Damazyn K, Klinger J, Gong H (2015) Inference and verification of probabilistic graphical models from high-dimensional data. Lect Notes Bioinform 9162
36.
go back to reference Mazumder R, Hastie T (2012) The graphical lasso: new insights and alternatives. Electron J Stat 6:2125 Mazumder R, Hastie T (2012) The graphical lasso: new insights and alternatives. Electron J Stat 6:2125
37.
go back to reference Ong I, Glasner J, Page D (2002) Modelling regulatoruypathways in e. coli from time series expression profiles. Bioinformatics 18:S241–S248 Ong I, Glasner J, Page D (2002) Modelling regulatoruypathways in e. coli from time series expression profiles. Bioinformatics 18:S241–S248
38.
go back to reference Parvu O, Gilbert D (2016) A novel method to verify multilevel computational models of biological systems using multiscale spatio-temporal meta model checking. PLOS One Parvu O, Gilbert D (2016) A novel method to verify multilevel computational models of biological systems using multiscale spatio-temporal meta model checking. PLOS One
39.
go back to reference Reddy S, Fun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw 6(2):1–27CrossRef Reddy S, Fun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw 6(2):1–27CrossRef
40.
go back to reference Robinson J, Hartemink R (2010) Learning non-stationary dynamic bayesian networks. J Mach Learn Res 11:3647–3680 Robinson J, Hartemink R (2010) Learning non-stationary dynamic bayesian networks. J Mach Learn Res 11:3647–3680
41.
go back to reference Schwaller L, Robin S (2016) Exact bayesian inference for off-line change-point detection in tree-structured graphical models. Stat Comput 27(5) Schwaller L, Robin S (2016) Exact bayesian inference for off-line change-point detection in tree-structured graphical models. Stat Comput 27(5)
42.
go back to reference Wang T, Samworth R (2017) High dimensional change point estimation via sparse projection. In: Statistical Methodology Wang T, Samworth R (2017) High dimensional change point estimation via sparse projection. In: Statistical Methodology
43.
go back to reference Wang Z, Guo Y, Gong H (2019) An integrative analysis of time-varying regulatory networks from high-dimensional data. In: IEEE international conference on big data, pp 3798–3807 Wang Z, Guo Y, Gong H (2019) An integrative analysis of time-varying regulatory networks from high-dimensional data. In: IEEE international conference on big data, pp 3798–3807
44.
go back to reference Yoshida R, Imoto S, Higuchi T (2005) Estimating time-dependent gene networks form time series microarray data by dynamic linear models with markov switching. CSB05, IEEE CSBC Yoshida R, Imoto S, Higuchi T (2005) Estimating time-dependent gene networks form time series microarray data by dynamic linear models with markov switching. CSB05, IEEE CSBC
45.
go back to reference You J, Starr D, Wu X, Parkhurst S, Zhuang Y, Xu T, Xu R, Han M (2006) The kash domain protein msp-300 plays an essential role in nuclear anchoring during drosophila oogenesis. Deve Biol 289(2):336–45CrossRef You J, Starr D, Wu X, Parkhurst S, Zhuang Y, Xu T, Xu R, Han M (2006) The kash domain protein msp-300 plays an essential role in nuclear anchoring during drosophila oogenesis. Deve Biol 289(2):336–45CrossRef
46.
go back to reference You Y, Wang T, Samworth R (2015) A useful variant of the davis-kahan theorem for statisticians. Biometrika 102:315–323CrossRef You Y, Wang T, Samworth R (2015) A useful variant of the davis-kahan theorem for statisticians. Biometrika 102:315–323CrossRef
47.
go back to reference Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance sampling. CAV, LNCS 2404:223–235 Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance sampling. CAV, LNCS 2404:223–235
48.
go back to reference Younes HLS, Simmons RG (2006) Statistical probabilistic model checking with a focus on time-bounded properties. Inf Comput 204(9):1368–1409 Younes HLS, Simmons RG (2006) Statistical probabilistic model checking with a focus on time-bounded properties. Inf Comput 204(9):1368–1409
49.
go back to reference Yu J, Smith V, Wang P, Hartemink A, Jarvis E (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603 Yu J, Smith V, Wang P, Hartemink A, Jarvis E (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603
50.
go back to reference Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22 Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22
Metadata
Title
Intelligent Learning and Verification of Biological Networks
Authors
Helen Richards
Yunge Wang
Tong Si
Hao Zhang
Haijun Gong
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_1

Premium Partner