Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Intensity Transformation Fusion of Landsat 8 Thermal Infrared (TIR) Imagery

Authors: Kul Vaibhav Sharma, Sumit Khandelwal, Nivedita Kaul

Published in: 4th International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2019

Publisher: Springer International Publishing

share
SHARE

Abstract

The spatial resolution of panchromatic (PAN) and thermal infrared (TIR) band is 15 m and 100 m respectively in Landsat-8 satellite dataset. The current research proposes an Intensity transformation based fusion method (ITFM) of PAN and TIR imagery. The proposed fusion method introduces unscented spatial filtering of input TIR and PAN images and component based fusion to downscale coarse resolution thermal data. The proposed algorithm has been examined with three thermal image downscaling methods, i.e., DisTrad, TsHARP and Local model. The relative comparison of fusion algorithms results has shown that the proposed ITFM fusion method has outperformed the other conventional methods. The proposed ITFM fusion method has merged edge details from PAN band and earth surface thermal information from TIR band precisely.
Literature
1.
go back to reference Yang, J., Zhang, J., Li, H., et al.: Pixel level fusion methods for remote sensing images: a current review. In: Remote Sensing Symposium (ISPRS), vol. 38, pp. 680–686 (2010) Yang, J., Zhang, J., Li, H., et al.: Pixel level fusion methods for remote sensing images: a current review. In: Remote Sensing Symposium (ISPRS), vol. 38, pp. 680–686 (2010)
2.
go back to reference Gao, F., Masek, J., Schwaller, M., Hall, F.: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006) CrossRef Gao, F., Masek, J., Schwaller, M., Hall, F.: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006) CrossRef
3.
go back to reference Li, X., et al.: Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sens. Environ. 196, 293–311 (2017) CrossRef Li, X., et al.: Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sens. Environ. 196, 293–311 (2017) CrossRef
4.
go back to reference Wang, Q., Alan, G., Onojeghuo, A.O., et al.: Fusion of Landsat 8 OLI and sentinel-2 MSI data, pp. 1–24 (2015) Wang, Q., Alan, G., Onojeghuo, A.O., et al.: Fusion of Landsat 8 OLI and sentinel-2 MSI data, pp. 1–24 (2015)
5.
go back to reference Al-Wassai, F.A., Kalyankar, D.N.: A novel metric approach evaluation for the spatial enhancement of pan-sharpened, pp. 479–493. CS & IT-CSCP (2012) Al-Wassai, F.A., Kalyankar, D.N.: A novel metric approach evaluation for the spatial enhancement of pan-sharpened, pp. 479–493. CS & IT-CSCP (2012)
6.
go back to reference Rodríguez-Galiano, V.F., et al.: Increasing the spatial resolution of thermal infrared images using cokriging. Procedia Environ. Sci. 3, 117–122 (2011) CrossRef Rodríguez-Galiano, V.F., et al.: Increasing the spatial resolution of thermal infrared images using cokriging. Procedia Environ. Sci. 3, 117–122 (2011) CrossRef
7.
go back to reference Rodriguez-Galiano, V., et al.: Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. Int. J. Appl. Earth Obs. Geoinf. 18, 515–527 (2012) CrossRef Rodriguez-Galiano, V., et al.: Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images. Int. J. Appl. Earth Obs. Geoinf. 18, 515–527 (2012) CrossRef
8.
go back to reference Zhu XX, Bamler R.: A Sparse Image Fusion Algorithm With Application to Pan-Sharpening. Vol. 51, pp. 2827–2836. IEEE Transactions on Geoscience and Remote Sensing (IEEE), (2013) Zhu XX, Bamler R.: A Sparse Image Fusion Algorithm With Application to Pan-Sharpening. Vol. 51, pp. 2827–2836. IEEE Transactions on Geoscience and Remote Sensing (IEEE), (2013)
9.
go back to reference Jin, H., Han, D.: Multisensor fusion of Landsat images for high-resolution thermal infrared images using sparse representations. Math. Probl. Eng. 2017, 1–10 (2014) Jin, H., Han, D.: Multisensor fusion of Landsat images for high-resolution thermal infrared images using sparse representations. Math. Probl. Eng. 2017, 1–10 (2014)
10.
go back to reference Baraldi, A., Despini, F., Teggi, S.: Multi-spectral image panchromatic sharpening – outcome and process quality assessment protocol, pp. 1–39. IEEE (2017) Baraldi, A., Despini, F., Teggi, S.: Multi-spectral image panchromatic sharpening – outcome and process quality assessment protocol, pp. 1–39. IEEE (2017)
11.
go back to reference Rahaman, K.R., Hassan, Q.K., Ahmed, M.R.: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents. Int. J. Geo-Inf. (MDPI) 6, 168 (2017) CrossRef Rahaman, K.R., Hassan, Q.K., Ahmed, M.R.: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents. Int. J. Geo-Inf. (MDPI) 6, 168 (2017) CrossRef
12.
go back to reference Farhanj, F., Akhoondzadeh, M.: Fusion of Landsat-8 thermal infrared and visible bands with multi-resolution analysis contourlet methods. Int. Arch. Photogramm Remote Sens. (ISPRS) 42, 77–81 (2017) CrossRef Farhanj, F., Akhoondzadeh, M.: Fusion of Landsat-8 thermal infrared and visible bands with multi-resolution analysis contourlet methods. Int. Arch. Photogramm Remote Sens. (ISPRS) 42, 77–81 (2017) CrossRef
13.
go back to reference Jamshidi, S., et al.: Application of a simple Landsat-MODIS fusion model to estimate evapotranspiration over a heterogeneous sparse vegetation region. Int. J. Geo-Inf. (MDPI) 11, 741 (2019) Jamshidi, S., et al.: Application of a simple Landsat-MODIS fusion model to estimate evapotranspiration over a heterogeneous sparse vegetation region. Int. J. Geo-Inf. (MDPI) 11, 741 (2019)
14.
go back to reference Cho, K., Kim, Y., Kim, Y.: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of awildfire. Int. J. Geo-Inf. (MDPI) 10, 105 (2018) Cho, K., Kim, Y., Kim, Y.: Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of awildfire. Int. J. Geo-Inf. (MDPI) 10, 105 (2018)
15.
go back to reference Wang, F., Qin, Z., Song, C., et al.: An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Int. J. Geo-Inf. (MDPI) 7, 4268–4289 (2015) Wang, F., Qin, Z., Song, C., et al.: An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Int. J. Geo-Inf. (MDPI) 7, 4268–4289 (2015)
Metadata
Title
Intensity Transformation Fusion of Landsat 8 Thermal Infrared (TIR) Imagery
Authors
Kul Vaibhav Sharma
Sumit Khandelwal
Nivedita Kaul
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39875-0_23