Skip to main content
Top

2025 | OriginalPaper | Chapter

Intent Identification Using Few-Shot and Active Learning with User Feedback

Authors : Senthil Ganesan Yuvaraj, Boualem Benatallah, Hamid Reza Motahari-Nezhad, Fethi Rabhi

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Collaboration tools contain many intents in workplace conversation, and identifying these intents is important to increase workplace productivity. However, labelling these intents for a large collection of conversations is expensive and data availability for new intents is quite limited. The pre-trained models show outstanding results in text classification tasks and large language models have recently produced accurate models with few samples. We explored few-shot learning methods and active learning strategies for this problem. Our proposed method, “SetFit with AL” is a combination of Sentence Transformer Fine-tuning (SetFit) and active learning for intent identification. This method fine-tunes a sentence-transformer model to develop accurate models. The intent classification evaluation dataset was used to evaluate this method. The results show that our proposed method outperforms state-of-the-art large language model GPT-3.5 and is comparable to GPT-4. This method also can utilize user feedback to adapt to new data and develop personalized models. Thus, the contribution of this paper is that fine-grained intents are identified using minimal data and the model is adaptable based on user feedback.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bodó, Z., Minier, Z., Csató, L.: Active learning with clustering. In: Active Learning and Experimental Design workshop In conjunction with AISTATS 2010, pp. 127–139. JMLR Workshop and Conference Proceedings (2011) Bodó, Z., Minier, Z., Csató, L.: Active learning with clustering. In: Active Learning and Experimental Design workshop In conjunction with AISTATS 2010, pp. 127–139. JMLR Workshop and Conference Proceedings (2011)
3.
go back to reference Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020) Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
4.
go back to reference Cohen, W.W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into“speech acts”. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (2004) Cohen, W.W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into“speech acts”. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (2004)
5.
go back to reference Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Intell. Res. 4, 129–145 (1996)CrossRef Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Intell. Res. 4, 129–145 (1996)CrossRef
6.
go back to reference Fernandes, P., et al.: Bridging the gap: a survey on integrating (human) feedback for natural language generation. arXiv preprint arXiv:2305.00955 (2023) Fernandes, P., et al.: Bridging the gap: a survey on integrating (human) feedback for natural language generation. arXiv preprint arXiv:​2305.​00955 (2023)
7.
go back to reference Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT outperforms crowd-workers for text-annotation tasks. arXiv preprint arXiv:2303.15056 (2023) Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT outperforms crowd-workers for text-annotation tasks. arXiv preprint arXiv:​2303.​15056 (2023)
8.
go back to reference Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745 (2011) Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv preprint arXiv:​1112.​5745 (2011)
9.
go back to reference Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027 (2019) Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:​1909.​02027 (2019)
10.
go back to reference Liu, H., et al.: Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Adv. Neural. Inf. Process. Syst. 35, 1950–1965 (2022) Liu, H., et al.: Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Adv. Neural. Inf. Process. Syst. 35, 1950–1965 (2022)
11.
go back to reference Lu, Y., et al.: Human still wins over LLM: an empirical study of active learning on domain-specific annotation tasks. arXiv preprint arXiv:2311.09825 (2023) Lu, Y., et al.: Human still wins over LLM: an empirical study of active learning on domain-specific annotation tasks. arXiv preprint arXiv:​2311.​09825 (2023)
13.
go back to reference Margatina, K., Vernikos, G., Barrault, L., Aletras, N.: Active learning by acquiring contrastive examples. arXiv preprint arXiv:2109.03764 (2021) Margatina, K., Vernikos, G., Barrault, L., Aletras, N.: Active learning by acquiring contrastive examples. arXiv preprint arXiv:​2109.​03764 (2021)
14.
go back to reference Nezhad, H.R.M., Gunaratna, K., Cappi, J.: eAssistant: cognitive assistance for identification and auto-triage of actionable conversations. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 89–98. WWW ’17 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/3041021.3054147 Nezhad, H.R.M., Gunaratna, K., Cappi, J.: eAssistant: cognitive assistance for identification and auto-triage of actionable conversations. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 89–98. WWW ’17 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://​doi.​org/​10.​1145/​3041021.​3054147
15.
go back to reference Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)MathSciNet Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)MathSciNet
16.
17.
18.
go back to reference Schröder, C., Müller, L., Niekler, A., Potthast, M.: Small-text: active learning for text classification in Python. arXiv preprint arXiv:2107.10314 (2021) Schröder, C., Müller, L., Niekler, A., Potthast, M.: Small-text: active learning for text classification in Python. arXiv preprint arXiv:​2107.​10314 (2021)
19.
go back to reference Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017) Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:​1708.​00489 (2017)
20.
go back to reference Shu, K., Mukherjee, S., Zheng, G., Awadallah, A.H., Shokouhi, M., Dumais, S.: Learning with weak supervision for email intent detection. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1051–1060 (2020) Shu, K., Mukherjee, S., Zheng, G., Awadallah, A.H., Shokouhi, M., Dumais, S.: Learning with weak supervision for email intent detection. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1051–1060 (2020)
21.
go back to reference Tam, D., Menon, R.R., Bansal, M., Srivastava, S., Raffel, C.: Improving and simplifying pattern exploiting training. arXiv preprint arXiv:2103.11955 (2021) Tam, D., Menon, R.R., Bansal, M., Srivastava, S., Raffel, C.: Improving and simplifying pattern exploiting training. arXiv preprint arXiv:​2103.​11955 (2021)
24.
go back to reference Wang, W., Hosseini, S., Awadallah, A.H., Bennett, P.N., Quirk, C.: Context-aware intent identification in email conversations. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 585–594 (2019) Wang, W., Hosseini, S., Awadallah, A.H., Bennett, P.N., Quirk, C.: Context-aware intent identification in email conversations. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 585–594 (2019)
25.
go back to reference Whittaker, S., Sidner, C.: Email overload: exploring personal information management of email. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 276–283 (1996) Whittaker, S., Sidner, C.: Email overload: exploring personal information management of email. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 276–283 (1996)
Metadata
Title
Intent Identification Using Few-Shot and Active Learning with User Feedback
Authors
Senthil Ganesan Yuvaraj
Boualem Benatallah
Hamid Reza Motahari-Nezhad
Fethi Rabhi
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_4

Premium Partner