Skip to main content
Top

2019 | OriginalPaper | Chapter

Inter-Scanner Harmonization of High Angular Resolution DW-MRI Using Null Space Deep Learning

Authors : Vishwesh Nath, Prasanna Parvathaneni, Colin B. Hansen, Allison E. Hainline, Camilo Bermudez, Samuel Remedios, Justin A. Blaber, Kurt G. Schilling, Ilwoo Lyu, Vaibhav Janve, Yurui Gao, Iwona Stepniewska, Baxter P. Rogers, Allen T. Newton, L. Taylor Davis, Jeff Luci, Adam W. Anderson, Bennett A. Landman

Published in: Computational Diffusion MRI

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) allows for non-invasive imaging of the local fiber architecture of the human brain at a millimetric scale. Multiple classical approaches have been proposed to detect both single (e.g., tensors) and multiple (e.g., constrained spherical deconvolution, CSD) fiber population orientations per voxel. However, existing techniques generally exhibit low reproducibility across MRI scanners. Herein, we propose a data-driven technique using a neural network design which exploits two categories of data. First, training data were acquired on three squirrel monkey brains using ex-vivo DW-MRI and histology of the brain. Second, repeated scans of human subjects were acquired on two different scanners to augment the learning of the network proposed. To use these data, we propose a new network architecture, the null space deep network (NSDN), to simultaneously learn on traditional observed/truth pairs (e.g., MRI-histology voxels) along with repeated observations without a known truth (e.g., scan-rescan MRI). The NSDN was tested on twenty percent of the histology voxels that were kept completely blind to the network. NSDN significantly improved absolute performance relative to histology by 3.87% over CSD and 1.42% over a recently proposed deep neural network approach. More-over, it improved reproducibility on the paired data by 21.19% over CSD and 10.09% over a recently proposed deep approach. Finally, NSDN improved generalizability of the model to a third in-vivo human scanner (which was not used in training) by 16.08% over CSD and 10.41% over a recently proposed deep learning approach. This work suggests that data-driven approaches for local fiber reconstruction are more reproducible, informative, precise and offer a novel, practical method for determining these models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nature Rev. Neurosci. 4(6), 469 (2003)CrossRef Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nature Rev. Neurosci. 4(6), 469 (2003)CrossRef
2.
go back to reference Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRef Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRef
3.
go back to reference Tournier, J., Calamante, F., Connelly, A.: How many diffusion gradient directions are required for HARDI. In: Proceedings of the International Society Magnetic Resonance in Medicine (2009) Tournier, J., Calamante, F., Connelly, A.: How many diffusion gradient directions are required for HARDI. In: Proceedings of the International Society Magnetic Resonance in Medicine (2009)
4.
go back to reference Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)CrossRef Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)CrossRef
5.
6.
go back to reference Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54(5), 1194–1206 (2005)CrossRef Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54(5), 1194–1206 (2005)CrossRef
7.
go back to reference Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Probl. 19(5), 1031 (2003)MathSciNetCrossRef Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse Probl. 19(5), 1031 (2003)MathSciNetCrossRef
8.
go back to reference Gorczewski, K., Mang, S., Klose, U.: Reproducibility and consistency of evaluation techniques for HARDI data. Magn. Reson. Material. Phys. Biol. Med. 22(1), 63 (2009)CrossRef Gorczewski, K., Mang, S., Klose, U.: Reproducibility and consistency of evaluation techniques for HARDI data. Magn. Reson. Material. Phys. Biol. Med. 22(1), 63 (2009)CrossRef
9.
go back to reference Nath, V., et al.: Comparison of multi-fiber reproducibility of PAS-MRI and Q-ball with empirical multiple b-value HARDI. In: Medical Imaging 2017: Image Processing (2017). (International Society for Optics and Photonics) Nath, V., et al.: Comparison of multi-fiber reproducibility of PAS-MRI and Q-ball with empirical multiple b-value HARDI. In: Medical Imaging 2017: Image Processing (2017). (International Society for Optics and Photonics)
10.
go back to reference Helmer, K., et al.: Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses. In: Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics (2016) Helmer, K., et al.: Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses. In: Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics (2016)
11.
go back to reference Huo, J., et al.: Between-scanner and between-visit variation in normal white matter apparent diffusion coefficient values in the setting of a multi-center clinical trial. Clin. Neuroradiol. 26(4), 423–430 (2016)CrossRef Huo, J., et al.: Between-scanner and between-visit variation in normal white matter apparent diffusion coefficient values in the setting of a multi-center clinical trial. Clin. Neuroradiol. 26(4), 423–430 (2016)CrossRef
12.
go back to reference Schilling, K., et al.: Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage 129, 185–197 (2016)CrossRef Schilling, K., et al.: Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage 129, 185–197 (2016)CrossRef
13.
go back to reference Mirzaalian, H., et al.: Harmonizing diffusion MRI data across multiple sites and scanners. In: International Conference on Medical Image Computing and Computer Assisted Intervention. Springer (2015) Mirzaalian, H., et al.: Harmonizing diffusion MRI data across multiple sites and scanners. In: International Conference on Medical Image Computing and Computer Assisted Intervention. Springer (2015)
14.
go back to reference Mirzaalian, H., et al.: Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135, 311–323 (2016)CrossRef Mirzaalian, H., et al.: Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135, 311–323 (2016)CrossRef
15.
go back to reference Fortin, J.-P., et al.: Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017)CrossRef Fortin, J.-P., et al.: Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017)CrossRef
16.
go back to reference Nath, Vishwesh, et al.: Deep learning captures more accurate diffusion fiber orientations distributions than constrained spherical deconvolution. In: ISMRM 2018, Paris, France Nath, Vishwesh, et al.: Deep learning captures more accurate diffusion fiber orientations distributions than constrained spherical deconvolution. In: ISMRM 2018, Paris, France
17.
go back to reference Stolp, H., et al.: Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D bridging of optically-clear histology with neuroimaging data (3D-BOND). Scientific reports 8(1), 4011 (2018)CrossRef Stolp, H., et al.: Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D bridging of optically-clear histology with neuroimaging data (3D-BOND). Scientific reports 8(1), 4011 (2018)CrossRef
18.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (2012)
19.
go back to reference Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)CrossRef Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)CrossRef
20.
go back to reference Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)CrossRef Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)CrossRef
21.
go back to reference Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRef Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRef
22.
go back to reference Nath, Vishwesh, et al.,: SHARD: spherical harmonic-based robust outlier detection for HARDI methods. In: Medical Imaging 2018: Image Processing. Vol. 10574. International Society for Optics and Photonics (2018) Nath, Vishwesh, et al.,: SHARD: spherical harmonic-based robust outlier detection for HARDI methods. In: Medical Imaging 2018: Image Processing. Vol. 10574. International Society for Optics and Photonics (2018)
23.
go back to reference Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRef Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRef
24.
go back to reference Li, S., et al.: A discriminative null space based deep learning approach for person re-identification. In: 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS). IEEE (2016) Li, S., et al.: A discriminative null space based deep learning approach for person re-identification. In: 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS). IEEE (2016)
25.
go back to reference Descoteaux, M., et al.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)CrossRef Descoteaux, M., et al.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)CrossRef
26.
go back to reference Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning-lecture 6a-overview of mini-batch gradient descent. Coursera Lecture slides (2012) Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning-lecture 6a-overview of mini-batch gradient descent. Coursera Lecture slides (2012)
Metadata
Title
Inter-Scanner Harmonization of High Angular Resolution DW-MRI Using Null Space Deep Learning
Authors
Vishwesh Nath
Prasanna Parvathaneni
Colin B. Hansen
Allison E. Hainline
Camilo Bermudez
Samuel Remedios
Justin A. Blaber
Kurt G. Schilling
Ilwoo Lyu
Vaibhav Janve
Yurui Gao
Iwona Stepniewska
Baxter P. Rogers
Allen T. Newton
L. Taylor Davis
Jeff Luci
Adam W. Anderson
Bennett A. Landman
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05831-9_16

Premium Partner